Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Ethnopharmacology 2017-Nov

Anti-thrombotic and pro-angiogenic effects of Rubia cordifolia extract in zebrafish.

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
Veza se sprema u međuspremnik
Yi Chen
Pei-Dong Chen
Bei-Hua Bao
Ming-Qiu Shan
Kai-Cheng Zhang
Fang-Fang Cheng
Yu-Dan Cao
Li Zhang
An-Wei Ding

Ključne riječi

Sažetak

BACKGROUND

Rubia cordifolia is a common traditional Chinese medicine that promotes blood circulation and eliminates blood stasis, and has been used to cure diseases related to blood stasis syndrome (BSS) clinically for many years. It has been previously demonstrated that anti-thrombosis and pro-angiogenesis can improve BSS. However, the anti-thrombotic and pro-angiogenic activities of Rubia cordifolia have not been well investigated.

OBJECTIVE

To determine the potential anti-thrombotic and pro-angiogenic activities of Rubia cordifolia and to elucidate the underlying mechanisms. In addition, the major chemical constituents of Rubia cordifolia extract (QC) were qualitatively analysed by UPLC-Q-TOF/MS to explore the association between pharmacological activity and chemical constituents.

METHODS

The QC samples were composed of a 95% ethanol extract and an aqueous extract following extraction using 95% ethanol. UPLC-Q-TOF/MS was used to analyse the major chemical constituents of QC. For the anti-thrombotic experiment of QC, a phenylhydrazine (PHZ)-induced AB strain zebrafish thrombosis model was used. The zebrafish larvae were stained using O-dianisidine, and the heart and caudal vein of the zebrafish were observed and imaged with a fluorescence microscope. The staining intensity of erythrocytes in the heart (SI) of each group and the morphology of thrombus in the caudal vein were used to assess the anti-thrombotic effect of QC. For the pro-angiogenic assay of QC, the intersegmental blood vessel (ISV) insufficiency model of Tg(fli-1: EGFP)y1 transgenic zebrafish (Flik zebrafish), which was induced by the VEGF receptor tyrosine kinase inhibitor II (VRI), was used. The morphology of the intact ISVs and defective ISVs was observed to evaluate the pro-angiogenic activity of QC. The mechanism involved in promoting angiogenesis was studied with real-time PCR.

RESULTS

A total of 12 components in QC were identified based on standard compounds and references, including nine anthraquinones and three naphthoquinones. After treatment with QC, the PHZ-induced thrombosis in AB strain zebrafish larvae decreased to a certain degree, which we believe was related to its dosages, and the therapeutic effect within the 50-200 µg/mL QC treatment groups was especially prominent (P < 0.01, P < 0.001) compared to that in the PHZ model group. Similarly, QC also recovered the loss of the ISVs, which was induced by VRI in Flik zebrafish larvae, which have a certain dose-effect relationship. The pro-angiogenic activity of QC was also conspicuous (P < 0.01, P < 0.001) compared to that of the VRI model group. The following real-time PCR assay proved that QC significantly restored the VRI-induced downregulation of vWF, VEGF-A, kdrl, and flt-1 in Flik zebrafish (P < 0.05, P < 0.01, P < 0.001).

CONCLUSIONS

A total of 12 compounds from QC were analysed by UPLC-Q-TOF/MS. The data of the pharmacological experiments demonstrated that QC presented anti-thrombotic and pro-angiogenic activities in zebrafish, and the principal active components were likely anthraquinones and naphthoquinones. Thus, the current study provided a theoretical basis for the clinical use of Rubia cordifolia as a traditional Chinese medicine in promoting blood circulation and eliminating stasis.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta znanošću

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti znanošću
  • Prepoznavanje bilja slikom
  • Interaktivna GPS karta - označite bilje na mjestu (uskoro)
  • Pročitajte znanstvene publikacije povezane s vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoje interese i budite u toku s istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Svi podaci temelje se na objavljenim znanstvenim istraživanjima

Google Play badgeApp Store badge