Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Advances in dental research 2018-02

Antimicrobial Activity of a Colloidal AgNP Suspension Demonstrated In Vitro against Monoculture Biofilms: Toward a Novel Tooth Disinfectant for Treating Dental Caries.

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
Veza se sprema u međuspremnik
D R Schwass
K M Lyons
R Love
G R Tompkins
C J Meledandri

Ključne riječi

Sažetak

A novel silver nanoparticle (AgNP) formulation was developed as a targeted application for the disinfection of carious dentine. Silver nitrate (AgNO3) was chemically reduced using sodium borohydrate (NaBH4) in the presence of sodium dodecyl sulfate (SDS) to form micelle aggregate structures containing monodisperse 6.7- to 9.2-nm stabilized AgNPs. AgNPs were characterized by measurement of electrical conductivity and dynamic light scattering, scanning electron microscopy, transmission electron microscopy, and inductively coupled plasma mass spectrometry. Antimicrobial activity of AgNPs was tested against planktonic cultures of representative gram-positive and gram-negative oral bacteria using well diffusion assays on tryptic soy broth media and monoculture biofilms grown with brain heart infusion ± sucrose anaerobically at 37°C on microtiter plates. Biofilm mass was measured by crystal violet assay. Effects were compared to silver diamine fluoride and chlorhexidine (negative controls) and 70% isopropanol (positive control) exposed cultures. In the presence of AgNPs, triplicate testing against Streptococcus gordonii DL1, C219, G102, and ATCC10558 strains; Streptococcus mutans UA159; Streptococcus mitis I18; and Enterococcus faecalis JH22 for planktonic bacteria, the minimum inhibitory concentrations were as low as 7.6 µg mL-1 and the minimum bacteriocidal concentrations as low as 19.2 µg mL-1 silver concentration. Microplate readings detecting crystal violet light absorption at 590 nm showed statistically significant differences between AgNP-exposed biofilms and where no antimicrobial agents were used. The presence of sucrose did not influence the sensitivity of any of the bacteria. By preventing in vitro biofilm formation for several Streptococcus spp. and E. faecalis, this AgNP formulation demonstrates potential for clinical application inhibiting biofilms.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta znanošću

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti znanošću
  • Prepoznavanje bilja slikom
  • Interaktivna GPS karta - označite bilje na mjestu (uskoro)
  • Pročitajte znanstvene publikacije povezane s vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoje interese i budite u toku s istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Svi podaci temelje se na objavljenim znanstvenim istraživanjima

Google Play badgeApp Store badge