Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochemical Journal 1993-Mar

Breakdown of thylakoid pigments by soluble proteins of developing chloroplasts.

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
Veza se sprema u međuspremnik
B J Whyte
P A Castelfranco

Ključne riječi

Sažetak

In the presence of Triton X-100 (TX-100) or imazalil, plastidic pigments were degraded by a soluble enzyme extracted from developing chloroplasts. This bleaching was not photochemical and required oxygen; it was not inhibited by superoxide dismutase or catalase, but was strongly inhibited by benzoquinone, quinol, phenazine methosulphate and, more weakly, by other reagents. Synthetic intermediates of chlorophyll biosynthesis, e.g. Mg(II)-protoporphyrin IX monomethyl ester, was also degraded. This reaction was compared with the bleaching catalysed by soybean (Glycine max) lipoxygenase. The plastidic system required TX-100 and was inhibited by unsaturated fatty acids, whereas lipoxygenase required a polyunsaturated fatty acid and was inhibited by TX-100. The bleaching capability of the stromal extract decreased with age if the seedlings were placed in the greenhouse to allow further development of the chloroplasts. A direct relationship was observed between the promotion of pigment bleaching by TX-100 and the inhibition of the in vitro synthesis of divinylprotochlorophyllide. This bleaching reaction is discussed on the basis of interference by TX-100 with the normal O2-requiring anabolic processes of developing chloroplasts.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta znanošću

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti znanošću
  • Prepoznavanje bilja slikom
  • Interaktivna GPS karta - označite bilje na mjestu (uskoro)
  • Pročitajte znanstvene publikacije povezane s vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoje interese i budite u toku s istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Svi podaci temelje se na objavljenim znanstvenim istraživanjima

Google Play badgeApp Store badge