Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biological and Pharmaceutical Bulletin 2018

Celastrol Suppresses Tryptophan Catabolism in Human Colon Cancer Cells as Revealed by Metabolic Profiling and Targeted Metabolite Analysis.

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
Veza se sprema u međuspremnik
Yunpeng Qi
Renping Wang
Liang Zhao
Lei Lv
Fan Zhou
Tian Zhang
Feng Lu
Hongli Yan
Gengli Duan

Ključne riječi

Sažetak

Celastrol is well known for its anti-cancer effects, yet its specific mechanisms against colon cancer are still not fully elucidated. In this study, cytotoxic effect of celastrol against HCT116 colon cancer cells was investigated based on cell viability assay and flow cytometry assay, and the possible mechanism was explored using a strategy combining metabolic profiling and targeted metabolite analysis based on ultra performance liquid chromatography (UPLC)/MS. Celastrol was found to inhibit the growth of colon cancer cells and induce apoptosis. Metabolomics analysis revealed characteristic changes in metabolic profiles of the colon cancer cells, revealing altered levels of amino acids, carnitine, and lipid markers. Most interestingly, with the assistance of targeted metabolite analysis, tryptophan (Trp) level was significantly increased whereas kynurenine (Kyn) level was decreased in colon cancer cells after celastrol treatment, together with markedly declined Kyn/Trp ratios. Western blot analysis revealed that expression of indoleamine 2,3-dioxygenase (IDO), the enzyme catalyzing Trp to generate Kyn, was dramatically inhibited in colon cancer cells after celastrol treatment, with a dose-dependent manner. These results suggest that suppression of IDO expression and tryptophan catabolism may be part of the mechanisms of celastrol in its cytotoxic effect against HCT116 colon cancer cells. This study provided scientific basis for further development of celastrol on treating colon cancer.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta znanošću

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti znanošću
  • Prepoznavanje bilja slikom
  • Interaktivna GPS karta - označite bilje na mjestu (uskoro)
  • Pročitajte znanstvene publikacije povezane s vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoje interese i budite u toku s istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Svi podaci temelje se na objavljenim znanstvenim istraživanjima

Google Play badgeApp Store badge