Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Tree Physiology 2000-Oct

Changes in volatile terpene and diterpene resin acid composition of resistant and susceptible white spruce leaders exposed to simulated white pine weevil damage.

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
Veza se sprema u međuspremnik
E S Tomlin
E Antonejevic
R I Alfaro
J H Borden

Ključne riječi

Sažetak

Induced (traumatic) resin in white spruce (Picea glauca (Moench) Voss) leaders resistant or susceptible to the white pine weevil (Pissodes strobi Peck) was analyzed for volatile terpenes and diterpene resin acids after simulated white pine weevil damage. Leaders from 331 trees were wounded just below the apical bud with a 1-mm diameter drill, coinciding with the natural time of weevil oviposition in the spring. Leaders were removed in the fall, and the bark and xylem from the upper and lower regions of the leader extracted and analyzed by gas chromatography. Unwounded trees had low amounts of resin in xylem compared with bark. In response to wounding, volatile terpenes and diterpene resin acids increased in the upper xylem (area of wounding), with resistant trees showing a greater increase than susceptible trees. Wounding caused monoterpenes in particular to decrease in the lower region of the leader (away from the drilled area) in greater amounts in susceptible trees than in resistant trees. In response to wounding, the proportion of monoterpene to resin acid increased in the upper and lower xylem of resistant trees, and slightly increased in the upper xylem of susceptible trees. Monoterpene-enriched resin is more fluid than constitutive resin, and probably flows more readily into oviposition cavities and larval mines, where it may kill immature weevils. Loss of resin components in the lower xylem suggested catabolism and transport of these materials to the site of wounding; however, energetic and regulatory data are necessary to confirm this hypothesis. This study provides a basis for measuring the ability of a tree to undergo traumatic resinosis that could be used to screen for resistance to white pine weevil.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta znanošću

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti znanošću
  • Prepoznavanje bilja slikom
  • Interaktivna GPS karta - označite bilje na mjestu (uskoro)
  • Pročitajte znanstvene publikacije povezane s vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoje interese i budite u toku s istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Svi podaci temelje se na objavljenim znanstvenim istraživanjima

Google Play badgeApp Store badge