Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Experimental Neurology 2009-Jul

Compartmentalized microfluidic culture platform to study mechanism of paclitaxel-induced axonal degeneration.

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
Veza se sprema u međuspremnik
In Hong Yang
Rezina Siddique
Suneil Hosmane
Nitish Thakor
Ahmet Höke

Ključne riječi

Sažetak

Chemotherapy induced peripheral neuropathy is a common and dose-limiting side effect of anticancer drugs. Studies aimed at understanding the underlying mechanism of neurotoxicity of chemotherapeutic drugs have been hampered by lack of suitable culture systems that can differentiate between neuronal cell body, axon or associated glial cells. Here, we have developed an in vitro compartmentalized microfluidic culture system to examine the site of toxicity of chemotherapeutic drugs. To test the culture platform, we used paclitaxel, a widely used anticancer drug for breast cancer, because it causes sensory polyneuropathy in a large proportion of patients and there is no effective treatment. In previous in vitro studies, paclitaxel induced distal axonal degeneration but it was unclear if this was due to direct toxicity on the axon or a consequence of toxicity on the neuronal cell body. Using microfluidic channels that allow compartmentalized culturing of neurons and axons, we demonstrate that the axons are much more susceptible to toxic effects of paclitaxel. When paclitaxel was applied to the axonal side, there was clear degeneration of axons; but when paclitaxel was applied to the soma side, there was no change in axon length. Furthermore, we show that recombinant human erythropoietin, which had been shown to be neuroprotective against paclitaxel neurotoxicity, provides neuroprotection whether it is applied to the cell body or the axons directly. This observation has implications for development of neuroprotective drugs for chemotherapy induced peripheral neuropathies as dorsal root ganglia do not possess blood-nerve-barrier, eliminating one of the cardinal requirements of drug development for the nervous system. This compartmentalized microfluidic culture system can be used for studies aimed at understanding axon degeneration, neuroprotection and development of the nervous system.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta znanošću

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti znanošću
  • Prepoznavanje bilja slikom
  • Interaktivna GPS karta - označite bilje na mjestu (uskoro)
  • Pročitajte znanstvene publikacije povezane s vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoje interese i budite u toku s istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Svi podaci temelje se na objavljenim znanstvenim istraživanjima

Google Play badgeApp Store badge