Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Microbial Cell Factories 2017-Feb

De novo biosynthesis of pterostilbene in an Escherichia coli strain using a new resveratrol O-methyltransferase from Arabidopsis.

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
Veza se sprema u međuspremnik
Kyung Taek Heo
Sun-Young Kang
Young-Soo Hong

Ključne riječi

Sažetak

BACKGROUND

Pterostilbene, a structural analog of resveratrol, has higher oral bioavailability and bioactivity than that of the parent compound; but is far less abundant in natural sources. Thus, to efficiently obtain this bioactive resveratrol analog, it is necessary to develop new bioproduction systems.

RESULTS

We identified a resveratrol O-methyltransferase (ROMT) function from a multifunctional caffeic acid O-methyltransferase (COMT) originating from Arabidopsis, which catalyzes the transfer of a methyl group to resveratrol resulting in pterostilbene production. In addition, we constructed a biological platform to produce pterostilbene with this ROMT gene. Pterostilbene can be synthesized from intracellular L-tyrosine, which requires the activities of four enzymes: tyrosine ammonia lyase (TAL), p-coumarate:CoA ligase (CCL), stilbene synthase (STS) and resveratrol O-methyltransferase (ROMT). For the efficient production of pterostilbene in E. coli, we used an engineered E. coli strain to increase the intracellular pool of L-tyrosine, which is the initial precursor of pterostilbene. Next, we tried to produce pterostilbene in the engineered E. coli strain using L-methionine containing media, which is used to increase the intracellular pool of S-adenosyl-L-methionine (SAM). According to this result, pterostilbene production as high as 33.6 ± 4.1 mg/L was achieved, which was about 3.6-fold higher compared with that in the parental E. coli strain harboring a plasmid for pterostilbene biosynthesis.

CONCLUSIONS

As a potential phytonutrient, pterostilbene was successfully produced in E. coli from a glucose medium using a single vector system, and its production titer was also significantly increased using a L-methionine containing medium in combination with a strain that had an engineered metabolic pathway for L-tyrosine. Additionally, we provide insights into the dual functions of COMT from A. thaliana which was characterized as a ROMT enzyme.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta znanošću

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti znanošću
  • Prepoznavanje bilja slikom
  • Interaktivna GPS karta - označite bilje na mjestu (uskoro)
  • Pročitajte znanstvene publikacije povezane s vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoje interese i budite u toku s istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Svi podaci temelje se na objavljenim znanstvenim istraživanjima

Google Play badgeApp Store badge