Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Shock 2003-Apr

Dependence of liver injury after hemorrhage/resuscitation in mice on NADPH oxidase-derived superoxide.

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
Veza se sprema u međuspremnik
Mark Lehnert
Gavin E Arteel
Olivia M Smutney
Lars O Conzelmann
Zhi Zhong
Ronald G Thurman
John J Lemasters

Ključne riječi

Sažetak

Hemorrhagic shock and resuscitation cause hepatocellular damage by mechanisms involving oxidative stress. However, the sources of free radicals mediating hepatocellular injury remain controversial. Thus, this study tested the hypothesis that NADPH oxidase plays a role in producing hepatocellular injury after hemorrhagic shock and resuscitation. Both wild-type and NADPH oxidase-deficient mice (p47(phox) knockout mice) were subjected to hemorrhagic shock (3 h at 30 mmHg). The mice were resuscitated over 30 min with the shed blood and additional lactated Ringer's solution (50% of the shed blood volume). Serum alanine aminotransferase (ALT) levels increased at 1 and 6 h postresuscitation in wild-type animals to 4735 +/- 1017 IU/L and 1450 +/- 275 IU/L (mean +/- SE), respectively, whereas in knockout mice, this ALT increase was blunted at both time points (732 +/- 241 IU/L and 328 +/- 69 IU/L, P < 0.05). Liver necrosis assessed histologically 6 h after the end of reperfusion was also attenuated in the knockout mice (3.5% +/- 0.95% of area vs. 0.9% +/- 0.26%, P < 0.05). In hemorrhaged wild-type mice, infiltrating neutrophils were twice as numerous compared with hemorrhaged NADPH oxidase-deficient animals 6 h after reperfusion. In knockout animals, hepatic 4-hydroxynonenal content, indicative of lipid peroxidation from reactive oxygen species, was blunted (6.7% +/- 0.6% vs. 26.4% +/- 2.3% of stained area, P < 0.05), as shown by immunohistochemistry. Immunohistochemical staining for 3-nitrotyrosine, indicative of reactive nitrogen species formation, was also blunted in the livers of knockout mice (11.6% +/- 2.8% vs. 37.4% +/- 3.4, P < 0.05). In conclusion, hemorrhagic shock and resuscitation cause hepatocellular damage via NADPH oxidase-mediated oxidative stress. The absence of NADPH oxidase substantially attenuates hepatocellular injury after hemorrhagic shock and resuscitation, blunts neutrophil infiltration, and decreases formation of reactive oxygen and reactive nitrogen species.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta znanošću

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti znanošću
  • Prepoznavanje bilja slikom
  • Interaktivna GPS karta - označite bilje na mjestu (uskoro)
  • Pročitajte znanstvene publikacije povezane s vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoje interese i budite u toku s istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Svi podaci temelje se na objavljenim znanstvenim istraživanjima

Google Play badgeApp Store badge