Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Chinese Journal of Chromatography (Se Pu) 2018-Jan

[Determination of myclobutanil and difenoconazole residues in pollen and honey of litchi by high performance liquid chromatography-tandem mass spectrometry].

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
Veza se sprema u međuspremnik
Siwei Wang
Yanping Liu
Haibin Sun
Lanjuan DU
Nengli Xu

Ključne riječi

Sažetak

An effective method was developed for the determination of two major fungicides including myclobutanil and difenoconazole residues in pollen and honey of litchi by modified QuEChERS-high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The pollen and honey samples were all extracted by acetonitrile, the pollen samples were cleaned-up by 0.9 g anhydrous magnesium sulfate (MgSO4), 0.15 g primary secondary amine (PSA) and 0.15 g C18; the honey samples were cleaned-up by 0.9 g MgSO4 and 0.15 g PSA. The 0.1% (v/v) formic acid aqueous solution-acetonitrile (25:75, v/v) were used as the mobile phases. The extracts were separated on a Poroshell-120 EC-C18 chromatographic column, the positive electrospray ion (ESI+) source and selected ion monitoring (SIM) mode were used. The analytes were quantified by the matrix matching standard solutions. The matrix matched standard solutions of myclobutanil and difenoconazole showed good linearities in the range of 1-100 μg/L, and the correlation coefficients (r2) were all above 0.9990. The limits of detection (LODs) of myclobutanil and difenoconazole were 0.25 μg/kg and 0.50 μg/kg, respectively. The limits of quantification (LOQs) of myclobutanil and difenoconazole were 0.83 μg/kg and 1.7 μg/kg, respectively. The average recoveries of myclobutanil and difenoconazole in pollen and honey samples were 87.0%-95.2% and 90.1%-96.4% with the relative standard deviations of 1.2%-3.6% and 0.7%-4.1%, respectively. The method is quick, easy and sensitive, and it is suitable for the rapid determination and trace analysis of myclobutanil and difenoconazole in pollens and honeys of litchi. The method can provide data support for the exposure risk assessment of bees and other pollination insects.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta znanošću

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti znanošću
  • Prepoznavanje bilja slikom
  • Interaktivna GPS karta - označite bilje na mjestu (uskoro)
  • Pročitajte znanstvene publikacije povezane s vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoje interese i budite u toku s istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Svi podaci temelje se na objavljenim znanstvenim istraživanjima

Google Play badgeApp Store badge