Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Agricultural and Food Chemistry 2002-Mar

Diphenol activation of the monophenolase and diphenolase activities of field bean (Dolichos lablab) polyphenol oxidase.

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
Veza se sprema u međuspremnik
Lalitha R Gowda
Beena Paul

Ključne riječi

Sažetak

This paper reports a study on the hydroxylation of ferulic acid and tyrosine by field bean (Dolichos lablab) polyphenol oxidase, a reaction that does not take place without the addition of catechol. A lag period similar to the characteristic lag of tyrosinase activity was observed, the length of which decreased with increasing catechol concentration and increased with increasing ferulic acid concentration. The activation constant K(a) of catechol for ferulic acid hydroxylation reaction was 5 mM. The kinetic parameters of field bean polyphenol oxidase toward ferulic acid and tyrosine were evaluated in the presence of catechol. 4-Methyl catechol, L-dihydroxyphenylalanine, pyrogallol, and 2,3,4-trihydroxybenzoic acid, substrates with high binding affinity to field bean polyphenol oxidase, could stimulate this hydroxylation reaction. In contrast, diphenols such as protocatechuic acid, gallic acid, chlorogenic acid, and caffeic acid, which were not substrates for the oxidation reaction, were unable to bring about this activation. It is most likely that only o-diphenols that are substrates for the diphenolase serve as cosubstrates by donating electrons at the active site for the monophenolase activity. The reaction mechanism for this activation is consistent with that proposed for tyrosinase (Sanchez-Ferrer, A.; Rodriguez-Lopez, J. N.; Garcia-Canovas, F.; Garcia-Carmona, F. Biochim. Biophys. Acta 1995, 1247, 1-11). The presence of o-diphenols, viz. catechol, L-dihydroxyphenylalanine, and 4-methyl catechol, is also necessary for the oxidation of the diphenols, caffeic acid, and catechin to their quinones by the field bean polyphenol oxidase. This oxidation reaction occurs immediately with no lag period and does not occur without the addition of diphenol. The kinetic parameters for caffeic acid (K(m) = 0.08 mM, V(max) = 32440 u/mg) in the presence of catechol and the activation constant K(a) of catechol (4.6 mM) for this reaction were enumerated. The absence of a lag period for this reaction indicates that the diphenol mechanism of diphenolase activation differs from the way in which the same o-diphenols activate the monophenolase activity.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta znanošću

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti znanošću
  • Prepoznavanje bilja slikom
  • Interaktivna GPS karta - označite bilje na mjestu (uskoro)
  • Pročitajte znanstvene publikacije povezane s vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoje interese i budite u toku s istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Svi podaci temelje se na objavljenim znanstvenim istraživanjima

Google Play badgeApp Store badge