Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Acta Physiologica Sinica 2006-Jun

[Effect of opening of mitochondrial ATP-sensitive K⁺ channel on the distribution of cytochrome C and on proliferation of human pulmonary arterial smooth muscle cells in hypoxia].

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
Veza se sprema u međuspremnik
Hong-Ling Hu
Zhen-Xiang Zhang
Jian-Ping Zhao
Tao Wang
Yong-Jian Xu

Ključne riječi

Sažetak

The objective of this paper was to investigate the contribution of mitochondrial ATP-sensitive K+ channel (mitoK(ATP)) and mitochondrial membrane potential (Deltapsim) to the distribution of cytochrome C in human pulmonary arterial smooth muscle cells (HPASMCs) and to the proliferation of HPASMCs induced by hypoxia. HPASMCs were divided into 6 groups, as following: (1) control group: cultured under normoxia; (2) diazoxide group: cultured in normoxia with diazoxide, an opener of mitoK(ATP); (3) 5-HD group: cultured in normoxia with 5-hydroxydecanoate (5-HD), an antagonist of mitoK(ATP); (4) 24-hour hypoxia group: cultured in hypoxia for 24 h; (5) 24-hour hypoxia + diazoxide group: cultured in hypoxia with diazoxide for 24 h; (6) 24-hour hypoxia + 5-HD group: cultured in hypoxia with 5-HD for 24 h. The relative changes in mitochondrial potential were tested with rhodamine fluorescence (R-123) technique. Western blot was used to detect the expression of cytochrome C protein in cell plasma and mitochondria,respectively. The expression of cell caspase-9 protein was determined with Western blot. The proliferation of HPASMCs was examined by cell cycle analysis and MTT colorimetric assay. The results were as following: after exposure to diazoxide for 24 h, the intensity of R-123 fluorescence in normoxic HPASMCs was significantly increased compared with that in the control group (P<0.05), but there was no significant change of the intensity of R-123 fluorescence after the HPASMCs had been exposed to 5-HD for 24 h; 24-hour hypoxia or 24-hour hypoxia + diazoxide could markedly increase the intensity of R-123 fluorescence in HPASMCs compared with normoxia (P<0.05), and the change was more significant in 24-hour hypoxia + diazoxide group than that in 24-hour hypoxia group (P<0.05); 5-HD could weaken the effect of 24-hour hypoxia on the intensity of R-123 fluorescence. After exposure to diazoxide for 24 h, the ratio of the expression of cytosolic cytochrome C protein to that of mitochondrial cytochrome C protein was significantly decreased compared with that in the control group (P<0.05), and the expression of caspase-9 protein was significantly decreased compared with that in the control group (P<0.05). The percentage of S phase and A value of MTT were significantly increased compared with those in the control group (P<0.05). But there were no significant changes in these tests after HPASMCs had been exposed to 5-HD for 24 h (P>0.05). After exposure to hypoxia or hypoxia + diazoxide for 24 h, the ratio of the expression of cytosolic cytochrome C protein to that of mitochondrial cytochrome C protein and the expression of caspase-9 protein were significantly decreased compared with those in the control group (P<0.05). The percentage of S phase and A value of MTT were significantly increased compared with those in the control group (P<0.05). These changes were more significant in 24-hour hypoxia + diazoxide group than those in 24-hour hypoxia group (P<0.05). 5-HD could weaken the effect of hypoxia on the changes of the distribution of cytochrome C, the expression of caspase-9 in HPASMCs and the proliferation of HPASMCs induced by hypoxia (P<0.05). All these results suggest that the opening of mitoK(ATP) followed by a depolarization of Deltapsim induced by hypoxia might contribute to the inhibition of the release of cytochrome C from mitochondria to plasma in HPASMCs. This might be a mechanism of the development of hypoxic pulmonary hypertension. The signal transduction pathway of mitochondria might play an important role in the relationship between Deltapsim and apoptosis of HPASMCs.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta znanošću

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti znanošću
  • Prepoznavanje bilja slikom
  • Interaktivna GPS karta - označite bilje na mjestu (uskoro)
  • Pročitajte znanstvene publikacije povezane s vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoje interese i budite u toku s istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Svi podaci temelje se na objavljenim znanstvenim istraživanjima

Google Play badgeApp Store badge