Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Molecular Biology 2006-Jul

Effects of postharvest storage and dormancy status on ABA content, metabolism, and expression of genes involved in ABA biosynthesis and metabolism in potato tuber tissues.

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
Veza se sprema u međuspremnik
Luis Destefano-Beltrán
Donna Knauber
Linda Huckle
Jeffrey C Suttle

Ključne riječi

Sažetak

At harvest, and for an indeterminate period thereafter, potato tubers will not sprout and are physiologically dormant. Abscisic acid (ABA) has been shown to play a critical role in tuber dormancy control but the mechanisms controlling ABA content during dormancy as well as the sites of ABA synthesis and catabolism are unknown. As a first step in defining the sites of synthesis and cognate processes regulating ABA turnover during storage and dormancy progression, gene sequences encoding the ABA biosynthetic enzymes zeaxanthin epoxidase (ZEP) and 9-cis-epoxycarotenoid dioxygenase (NCED) and three catabolism-related genes were used to quantify changes in their relative mRNA abundances in three specific tuber tissues (meristems, their surrounding periderm and underlying cortex) by qRT-PCR. During storage, StZEP expression was relatively constant in meristems, exhibited a biphasic pattern in periderm with transient increases during early and mid-to-late-storage, and peaked during mid-storage in cortex. Expression of two members of the potato NCED gene family was found to correlate with changes in ABA content in meristems (StNCED2) and cortex (StNCED1). Conversely, expression patterns of three putative ABA-8'-hydroxylase (CYP707A) genes during storage varied in a tissue-specific manner with expression of two of these genes rising in meristems and periderm and declining in cortex during storage. These results suggest that ABA synthesis and metabolism occur in all tuber tissues examined and that tuber ABA content during dormancy is the result of a balance of synthesis and metabolism that increasingly favors catabolism as dormancy ends and may be controlled at the level of StNCED and StCYP707A gene activities.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta znanošću

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti znanošću
  • Prepoznavanje bilja slikom
  • Interaktivna GPS karta - označite bilje na mjestu (uskoro)
  • Pročitajte znanstvene publikacije povezane s vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoje interese i budite u toku s istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Svi podaci temelje se na objavljenim znanstvenim istraživanjima

Google Play badgeApp Store badge