Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
New Phytologist 2009-Mar

Effects of salt stress on the expression of antioxidant genes and proteins in the model legume Lotus japonicus.

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
Veza se sprema u međuspremnik
Maria C Rubio
Pilar Bustos-Sanmamed
Maria R Clemente
Manuel Becana

Ključne riječi

Sažetak

Salt stress negatively affects many physiological processes in plants. Some of these effects may involve the oxidative damage of cellular components, which can be promoted by reactive oxygen species and prevented by antioxidants. The protective role of antioxidants was investigated in Lotus japonicus exposed to two salinization protocols: S1 (150 mM NaCl for 7 d) and S2 (50, 100 and 150 mM NaCl, each concentration for 6 d). Several markers of salt stress were measured and the expression of antioxidant genes was analyzed using quantitative reverse transcription–polymerase chain reaction and, in some cases, immunoblots and enzyme activity assays. Leaves of S1 plants suffered from mild osmotic stress, accumulated proline but noNa+, and showed induction of many superoxide dismutase and glutathione peroxidase genes. Leaves of S2 plants showed increases in Na+ and Ca2+, decreases in K+, and accumulation of proline and malondialdehyde. In leaves and roots of S1 and S2 plants, the mRNA, protein and activity levels of the ascorbate-glutathione enzymes remained constant, with a few exceptions. Notably, there was consistent up-regulation of the gene encoding cytosolic dehydroascorbate reductase, and this was possibly related to its role in ascorbate recycling in the apoplast. The overall results indicate that L. japonicus is more tolerant to salt stress than other legumes, which can be attributed to the capacity of the plant to prevent Na+reaching the shoot and to activate antioxidant defenses.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta znanošću

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti znanošću
  • Prepoznavanje bilja slikom
  • Interaktivna GPS karta - označite bilje na mjestu (uskoro)
  • Pročitajte znanstvene publikacije povezane s vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoje interese i budite u toku s istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Svi podaci temelje se na objavljenim znanstvenim istraživanjima

Google Play badgeApp Store badge