Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Ethnopharmacology 2014-Aug

Effects of total lignans from Eucommia ulmoides barks prevent bone loss in vivo and in vitro.

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
Veza se sprema u međuspremnik
Rong Zhang
Ya-Lei Pan
Shi-Jie Hu
Xiang-He Kong
Wang Juan
Qi-Bing Mei

Ključne riječi

Sažetak

BACKGROUND

The present study systematically investigate the in vivo and in vitro effect of total lignans (TL) extracted from Eucommia ulmoides Oliv. barks on bone formation using ovariectomy rat model and primary cultures of rat osteoblasts.

METHODS

Eighty 3-month-old female Sprague-Dawley rats were used and randomly assigned into sham-operated group (SHAM) and five ovariectomy (OVX) subgroups, i.e. OVX with vehicle (OVX); OVX with 17α-ethinylestradiol (E2, 25 μg/kg/day); OVX with TL of graded doses (20, 40, or 80 mg/kg/day). The treatment began 4 weeks after the surgery and lasted for 16 weeks. in vitro experiments were performed to determine the potential mechanisms of the anti-osteoporotic effect of TL.

RESULTS

Treatment with TL significantly prevent OVX-induced decrease in biomechanical quality of femur such as maximum stress and Young׳s modulus. The mechanical changes were associated with the prevention of a further BMD decrease or even with some improvements in microarchitecture. TL inhibited BMD decrease in the femur caused by OVX, which was accompanied by a significant decrease in skeletal remodeling, as was evidenced by the decreased levels of the bone turnover markers. μCT analysis of the femoral metaphysis showed how to prevent the deterioration of trabecular microarchitecture. TL induced primary osteoblastic cell proliferation and differentiation, inhibition of osteoclastogenesis through an increase in osteoprotegrin (OPG) and a decrease in NF-κB ligand (RANKL) expression in vitro.

CONCLUSIONS

We concluded that TL treatment can effectively suppress the loss of bone mass induced by OVX and in vitro evidence suggests this could be through actions on both osteoblasts and osteoclasts.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta znanošću

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti znanošću
  • Prepoznavanje bilja slikom
  • Interaktivna GPS karta - označite bilje na mjestu (uskoro)
  • Pročitajte znanstvene publikacije povezane s vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoje interese i budite u toku s istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Svi podaci temelje se na objavljenim znanstvenim istraživanjima

Google Play badgeApp Store badge