Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Cancer Biology and Therapy 2015

Efficacy and safety of the hypoxia-activated prodrug TH-302 in combination with gemcitabine and nab-paclitaxel in human tumor xenograft models of pancreatic cancer.

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
Veza se sprema u međuspremnik
Jessica D Sun
Qian Liu
Dharmendra Ahluwalia
Wenwu Li
Fanying Meng
Yan Wang
Deepthi Bhupathi
Ayesha S Ruprell
Charles P Hart

Ključne riječi

Sažetak

Tumors often contain hypoxic regions resistant to chemo- and radiotherapy. TH-302 (T) is an investigational hypoxia-activated prodrug that selectively releases the DNA cross-linker bromo-isophosphoramide mustard under hypoxic conditions. This study evaluated the efficacy and safety profile of combining T with gemcitabine (G) and nab-paclitaxel (nP) in human pancreatic ductal adenocarcinoma (PDAC) xenograft models in mice. Antitumor activity of the G + nP + T triplet was assessed and compared with T-alone or the G + nP doublet in the Hs766t, MIA PaCa-2, PANC-1, and BxPC-3 PDAC xenograft models. Efficacy was assessed by tumor growth kinetic analysis. Body weight, blood cell counts, blood chemistry, and the von Frey neuropathy assay were analyzed to evaluate safety profiles. Pharmacodynamic changes after the treatment were determined by immunohistochemistry of cell proliferation, DNA damage, apoptosis, hypoxia, and tumor stroma density. The G + nP + T triplet exhibited enhanced efficacy compared with T-alone or the G + nP doublet. Compared with vehicle (V), G + nP induced body weight loss, reduced neutrophil and lymphocyte counts, increased the levels of liver function parameters, and induced neurotoxicity. However, when T was added to G + nP, there was no statistically increased impairment compared to G + nP. The triplet significantly increased DNA damage, apoptosis, and tumor necrosis. Furthermore, the triplet further inhibited cell proliferation and reduced stroma density and intratumoral hypoxia. The triplet combination of G + nP + T exhibited superior efficacy but additive toxicity was not evident compared to the G + nP doublet in this study. This study provides a translational rationale for combining G, nP, and T in the clinical setting to assess efficacy and safety. A Phase I clinical trial of the triplet combination is currently underway (NCT02047500).

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta znanošću

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti znanošću
  • Prepoznavanje bilja slikom
  • Interaktivna GPS karta - označite bilje na mjestu (uskoro)
  • Pročitajte znanstvene publikacije povezane s vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoje interese i budite u toku s istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Svi podaci temelje se na objavljenim znanstvenim istraživanjima

Google Play badgeApp Store badge