Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Cardiology 2016-Dec

Green tea (Cammellia sinensis) attenuates ventricular remodeling after experimental myocardial infarction.

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
Veza se sprema u međuspremnik
Beatriz B Lustosa
Bertha Polegato
Marcos Minicucci
Bruna Rafacho
Priscila P Santos
Ana Angélica Fernandes
Katashi Okoshi
Diego Batista
Pamela Modesto
Andrea Gonçalves

Ključne riječi

Sažetak

BACKGROUND

Considering the high morbidity and mortality after myocardial infarction (MI), the study of compounds with potential benefits for cardiac remodeling is reasonable. Green tea (GT) (Cammellia sinensis) is the most consumed beverage in the world. The potential action mechanisms of GT include anti-inflammatory, anti-apoptotic, antioxidant, and lipid-lowering properties.

OBJECTIVE

This study analyzed the effects of GT on cardiac remodeling following coronary occlusion in rats.

METHODS

Male Wistar rats were divided into four groups: control (C), control green tea (GT), myocardial infarction (MI), and myocardial infarction and green tea (MI-GT). GT and MI-GT were fed with standard chow with 0.25% Polyphenon 60 (Sigma-Aldrich Canada, Oakville, ON, Canada). After 3months of observation, echocardiographic and isolated heart study, oxidative stress, energy metabolism, serum lipids, extracellular matrix, and apoptosis were evaluated.

RESULTS

GT reduced cardiac hypertrophy and improved systolic and diastolic dysfunction. Concerning oxidative stress, GT reduced protein carbonyl, increased Nrf-2, and restored antioxidant enzyme activity to the control pattern. Energy metabolism was affected by MI that presented with lower fatty acid oxidation and accumulation of triacylglycerol, increased serum lipids, impairment of the citric acid cycle, and oxidative phosphorylation. GT stimulated the glucose pathway and mitochondrial function after MI by increasing pyruvate dehydrogenase, Complex I, ATP synthase, and glycogen storage. In addition, MI changed the extracellular matrix including MMP-2 and TIMP-1 activity and increased apoptosis by 3-caspase, all of which were attenuated by GT.

CONCLUSIONS

GT attenuated cardiac remodeling after MI, associated with improvement in systolic and diastolic dysfunction. Oxidative stress, energy metabolism, apoptosis, and extracellular matrix alterations are all potential mechanisms by which GT may take part.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta znanošću

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti znanošću
  • Prepoznavanje bilja slikom
  • Interaktivna GPS karta - označite bilje na mjestu (uskoro)
  • Pročitajte znanstvene publikacije povezane s vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoje interese i budite u toku s istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Svi podaci temelje se na objavljenim znanstvenim istraživanjima

Google Play badgeApp Store badge