Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Medicinal Chemistry 1995-May

Hypoxia-selective antitumor agents. 10. bis(nitroimidazoles) and related Bis(nitroheterocycles): development of derivatives with higher rates of metabolic activation under hypoxia and improved aqueous solubility.

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
Veza se sprema u međuspremnik
M P Hay
H H Lee
W R Wilson
P B Roberts
W A Denny

Ključne riječi

Sažetak

A series of analogues of the previously described compound N-[2-(2-methyl-5-nitroimidazol-1H-yl)ethyl]-4-(2-nitroimidazol- 1H-yl)butanamide (4), a novel hypoxic cell cytotoxin and radiosensitizer, have been prepared and evaluated for hypoxia-selective cytotoxicity and hypoxic cell radiosensitization in vitro. The new derivatives were designed to overcome the low aqueous solubility of 4 and its slow kinetics of killing under hypoxia. The nitroheterocycle unit had a significant effect on solubility, with 3-nitrotriazoles being about 6-fold more soluble than the corresponding 2-nitroimidazoles. Analogues with a range of neutral linker chains (polyhydroxy, alkanesulfonamide, and bisamide) showed only slightly improved solubility and were unable to be fully evaluated. However, a series of analogues with cationic amine linkers had adequate aqueous solubility (up to 280 mM). The amine analogues could not be prepared by direct reduction of precursor amides such as 4 and were most conveniently synthesized by aza-Wittig condensation of the appropriate azide and aldehyde components. The amine-linked compounds were more cytotoxic than 4, with the symmetrical bis(2-nitroimidazole) derivatives (13 and 14) up to 9-fold more potent. They showed hypoxic selectivities comparable to that of 4 (ca. 200-fold) but had much more rapid kinetics of killing under hypoxia, resulting in high hypoxic selectivity at early times in culture. The nature of the mechanism of cytotoxicity of these compounds remains unclear but appears not to be DNA cross-linking, with the compounds showing a lack of hypersensitivity toward repair-deficient UV4 cells. The enhanced solubility and hypoxia-selective cytotoxicity (at early times) of 13 compared with 4 represent significant potential advantages.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta znanošću

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti znanošću
  • Prepoznavanje bilja slikom
  • Interaktivna GPS karta - označite bilje na mjestu (uskoro)
  • Pročitajte znanstvene publikacije povezane s vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoje interese i budite u toku s istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Svi podaci temelje se na objavljenim znanstvenim istraživanjima

Google Play badgeApp Store badge