Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Medical Science Monitor 2019-Oct

IQ Motif Containing GTPase-Activating Protein 3 (IQGAP3) Inhibits Kaempferol-Induced Apoptosis in Breast Cancer Cells by Extracellular Signal-Regulated Kinases 1/2 (ERK1/2) Signaling Activation.

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
Veza se sprema u međuspremnik
Gaowu Hu
Huajiang Liu
Ming Wang
Wei Peng

Ključne riječi

Sažetak

BACKGROUND Breast cancer (BC), a prevalent and heterogeneous disease of glandular breast tissue, is the most common cancer in women. The interaction between Kaempferol and IQ motif containing GTPase-activating protein 3 (IQGAP3) in BC and its underlying mechanism are poorly defined. MATERIAL AND METHODS After natural phytochemicals treatment, the expression of IQGAP3 in BC cells (ZR-75-30 and BT474) was detected by real-time PCR. Then, the proliferation and apoptosis in BC cells with different gradient concentrations (10, 25, 50, and 100 µmol/l) of Kaempferol treatment were detected. After treatment with Kaempferol or epidermal growth factor (EGF), we assessed apoptosis and expression of related genes. RESULTS We found that natural phytochemicals, especially Kaempferol, decreased IQGAP3 expression in BC cells. Kaempferol significantly induced proliferation inhibition and apoptosis in BC cells, concurrent with decreased IQGAP3 expression. Upregulation of IQGAP3 inhibited apoptosis in BC cells, along with increased expression of phosphorylated extracellular signal-regulated kinases 1/2 (p-ERK1/2) and B cell lymphoma 2 (Bcl2) and decreased Bcl-2-associated X protein (Bax) expression, which was counteracted by Kaempferol treatment. EGF markedly inhibited Kaempferol-induced apoptosis in BC cells, and ERK1/2 inhibitor PD98059 had an effect similar to that of Kaempferol. CONCLUSIONS IQGAP3 may be a potential target gene for Kaempferol in the treatment of BC, and upregulation of IQGAP3 inhibits Kaempferol-induced apoptosis in BC cells by ERK1/2 signaling activation. Targeting IQGAP3 may contribute to the study of natural phytochemicals as anti-tumor drugs in BC.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta znanošću

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti znanošću
  • Prepoznavanje bilja slikom
  • Interaktivna GPS karta - označite bilje na mjestu (uskoro)
  • Pročitajte znanstvene publikacije povezane s vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoje interese i budite u toku s istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Svi podaci temelje se na objavljenim znanstvenim istraživanjima

Google Play badgeApp Store badge