Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Current Protein and Peptide Science 2013-Dec

Implications of angiotensin II in central nervous system on exercise performance.

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
Veza se sprema u međuspremnik
Laura H R Leite
Henrique P Santiago
Rafael S V de Almeida
Cândido C Coimbra

Ključne riječi

Sažetak

The renin-angiotensin system (RAS) consists of a complex enzyme-peptide system, which, besides from functioning as a circulating endocrine system, is also intrinsic in many organs and tissues, including the brain. Although the RAS generates a family of biological active peptides, angiotensin II (Ang II) is still considered one of its main mediators and effectors. Ang II produces many well defined and potent effects through AT1 and AT2 receptors and its physiological applications are yet expanding. Recently, it has been proposed that Ang II, acting both centrally and peripherally, interferes on exercise performance due to its influence on multiple functions within the organism. This hypothesis is also supported by evidences reporting an increased frequency of the ACE I allele among elite athletes, suggesting that this is a genetic factor that influences physical performance. The fatigue resulting from physical exercise is a multifactorial phenomenon that comprises the interaction between physiological factors of peripheral and/or central origin. To that extent, the Ang II-mediated events on factors that affect exercise performance such as cardiovascular, metabolic and thermoregulatory adjustments as well as cerebral metabolism and neurohumoral or neurotransmitter turnover, implicate the peptide in the genesis of exercise-induced fatigue. This mini-review focuses on how exercise-induced physiological adjustments are influenced by Ang II within the central nervous system and how these effects may limit athletic performance.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta znanošću

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti znanošću
  • Prepoznavanje bilja slikom
  • Interaktivna GPS karta - označite bilje na mjestu (uskoro)
  • Pročitajte znanstvene publikacije povezane s vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoje interese i budite u toku s istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Svi podaci temelje se na objavljenim znanstvenim istraživanjima

Google Play badgeApp Store badge