Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Oncology 2018-Nov

Induction of apoptosis and G1 phase cell cycle arrest by Aster incisus in AGS gastric adenocarcinoma cells.

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
Veza se sprema u međuspremnik
Daniel Ngabire
Yeong-Ae Seong
Maheshkumar Prakash Patil
Irvine Niyonizigiye
Yong Bae Seo
Gun-Do Kim

Ključne riječi

Sažetak

In recent decades, various bioactive compounds from plants have been investigated for their potential use in the treatment of diseases in humans. Aster incisus extract (AIE) is the extract of a common plant that is mostly found in Asia. It has traditionally been used for medicinal purposes in South Korea. In this study, we evaluated the potential anticancer effects of a methanolic extract of Aster incisus in a normal human cell line (HaCaT keratinocytes) and in 4 different types of human cancer cell lines (A549, lung cancer; Hep3B, liver cancer; MDA‑MB‑231, breast cancer; and AGS, gastric cancer). The HaCaT, A549, Hep3B, MDA‑MB‑231 and AGS cells were treated with various concentrations of AIE and following treatment, cell survival was evaluated. Additional analyses, such as WST-1 assay, western blot analysis, DAPI staining, flow cytometry, immunofluorescence staining and wound healing assay were performed to elucidate the mechanisms and pathways involved in the cell death induced by AIE. Treatment with AIE induced morphological changes and considerably reduced the viability of the both normal and cancer cell lines. Further analysis of the AGS gastric cancer cells revealed that AIE led to the induction of apoptosis and a high accumulation of cells in the G1 cell phase following treatment with AIE in a dose-dependent manner. The results also revealed that AIE successfully suppressed the migration of the AIE-treated AGS cells. The results of western blot analysis indicated that AIE increased the expression of pro-apoptotic proteins, particularly Bid, Bad, Bak, cytochrome c, apoptosis inducing factor (AIF), cleaved caspase‑3, -8 and -9 and cleaved poly(ADP-ribose) polymerase (PARP). Additionally, AIE decreased the expression of the anti-apoptotic proteins, Bcl-2 and Bcl-xL. On the whole, the findings of this study demonstrate that AIE induces apoptosis through the activation of the caspase‑dependent pathway mediated by the mitochondrial pathway and by arresting the cell cycle in AGS cells.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta znanošću

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti znanošću
  • Prepoznavanje bilja slikom
  • Interaktivna GPS karta - označite bilje na mjestu (uskoro)
  • Pročitajte znanstvene publikacije povezane s vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoje interese i budite u toku s istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Svi podaci temelje se na objavljenim znanstvenim istraživanjima

Google Play badgeApp Store badge