Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Medicinal Food 2016-Apr

Involvement of Nuclear Related Factor 2 Signaling Pathway in the Brain of Obese Rats and Obesity-Resistant Rats Induced by High-Fat Diet.

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
Veza se sprema u međuspremnik
Wei-Wei Ma
Bing-Jie Ding
Li-Jing Wang
Yi Shao
Rong Xiao

Ključne riječi

Sažetak

We aimed to investigate the mechanism of brain damage in diet-induced obese (DIO) rats and diet-resistant (DR) rats from the viewpoint of redox state and nuclear related factor 2 (Nrf2) signaling pathway. Sprague-Dawley rats were fed with a high-fat diet for 10 weeks to obtain the DIO and DR rats. d-Galactose was injected subcutaneously through the back of the neck for 10 weeks to establish oxidative stress model rats. Then, the ratio of reduced glutathione (GSH)/oxidized glutathione (GSSG) and the level of glutathione peroxidase (GSH-Px) in serum and brain tissue were measured by using enzymatic assay kits. The levels of cholecystokinin and peptide YY in the brain tissue were detected by using enzyme-linked immunosorbent assay kits. In addition, the protein expression of Nrf2 and its downstream factors such as heme oxygenase 1, manganese superoxide dismutase, and NAD(P)H quinone oxidoreductase 1 (NQO1) in the brain tissue were measured by Western blotting. In the brain of DIO rats, the level of GSH and ratio of GSH/GSSG were lower, whereas the GSH-Px concentration was higher compared with DR rats significantly. On the other hand, the GSSG level was higher in the serum of DIO rats compared with the DR rats. The oxidative stress state in the brain of DIO rats, but not in DR rats, were observed. In addition, the protein expressions of Nrf2 and NQO1 were downregulated in the brain of DR rats compared with that in DIO rats. Our data suggest that the Nrf2/NQO1 signaling pathway and redox state were involved in the pathogenesis of the rats prone to obesity, but not the DR rats resistant to obesity.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta znanošću

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti znanošću
  • Prepoznavanje bilja slikom
  • Interaktivna GPS karta - označite bilje na mjestu (uskoro)
  • Pročitajte znanstvene publikacije povezane s vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoje interese i budite u toku s istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Svi podaci temelje se na objavljenim znanstvenim istraživanjima

Google Play badgeApp Store badge