Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Neurotrauma 2019-Dec

Kaempferol treatment after TBI during early development mitigates brain parenchymal microstructure and neural functional connectivity deterioration at adolescence.

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
Veza se sprema u međuspremnik
Maxime Parent
Jyothsna Chitturi
Vijayalakshmi Santhakumar
Fahmeed Hyder
Basavaraju Sanganahalli
Sridhar Kannurpatti

Ključne riječi

Sažetak

Targeting mitochondrial ion homeostasis using Kaempferol, a mitochondrial Ca2+ uniporter channel activator, improves energy metabolism and behavior soon after a traumatic brain injury (TBI) in developing rats. Due to broad TBI pathophysiology and brain mitochondrial heterogeneity, Kaempferol mediated early-stage behavioral and brain metabolic benefits may accrue from diverse sources within the brain. We hypothesized that Kaempferol influences TBI outcome by differentially impacting the neural, vascular and synaptic/axonal compartments. Following TBI at early development (P31), fMRI and DTI were applied to determine imaging outcomes at adolescence (2-months post-injury). Vehicle and Kaempferol treatments were made at 1, 24 and 48 hrs post-TBI and their effects were assessed at adolescence. A significant increase in neural connectivity was observed after Kaempferol treatment as assessed by the spatial extent and strength of the somatosensory cortical and hippocampal RSFC networks. However, no significant RSFC changes were observed in the thalamus. DTI measures of fractional anisotropy (FA) and apparent diffusion coefficient (ADC), representing synaptic/axonal and microstructural integrity, showed significant improvements after Kaempferol treatment, with highest changes in the frontal and parietal cortices and hippocampus. Kaempferol treatment also increased corpus callosal FA, indicating measurable improvement in the inter-hemispheric structural connectivity. TBI prognosis was significantly altered at adolescence by early Kaempferol treatment, with improved neural connectivity, neurovascular coupling and parenchymal microstructure in select brain regions. However, Kaempferol failed to improve vasomotive function across the whole brain, as measured by cerebrovascular reactivity (CVR). The differential effects of Kaempferol treatment on various brain functional compartments support diverse cellular-level mitochondrial functional outcomes in vivo.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta znanošću

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti znanošću
  • Prepoznavanje bilja slikom
  • Interaktivna GPS karta - označite bilje na mjestu (uskoro)
  • Pročitajte znanstvene publikacije povezane s vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoje interese i budite u toku s istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Svi podaci temelje se na objavljenim znanstvenim istraživanjima

Google Play badgeApp Store badge