Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
FASEB Journal 2016-Oct

Loss of expression of protein phosphatase magnesium-dependent 1A during kidney injury promotes fibrotic maladaptive repair.

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
Veza se sprema u međuspremnik
Rohan Samarakoon
Alexandra Rehfuss
Nidah S Khakoo
Lucas L Falke
Amy D Dobberfuhl
Sevann Helo
Jessica M Overstreet
Roel Goldschmeding
Paul J Higgins

Ključne riječi

Sažetak

Protein phosphatase magnesium-dependent-1A (PPM1A) dephosphorylates SMAD2/3, which suppresses TGF-β signaling in keratinocytes and during Xenopus development; however, potential involvement of PPM1A in chronic kidney disease is unknown. PPM1A expression was dramatically decreased in the tubulointerstitium in obstructive and aristolochic acid nephropathy, which correlates with progression of fibrotic disease. Stable silencing of PPM1A in human kidney-2 human renal epithelial cells increased SMAD3 phosphorylation, stimulated expression of fibrotic genes, induced dedifferentiation, and orchestrated epithelial cell-cycle arrest via SMAD3-mediated connective tissue growth factor and plasminogen activator inhibitor-1 up-regulation. PPM1A stable suppression in normal rat kidney-49 renal fibroblasts, in contrast, promoted a SMAD3-dependent connective tissue growth factor and plasminogen activator inhibitor-1-induced proliferative response. Paracrine factors secreted by PPM1A-depleted epithelial cells augmented fibroblast proliferation (>50%) compared with controls. PPM1A suppression in renal cells further enhanced TGF-β1-induced SMAD3 phosphorylation and fibrotic gene expression, whereas PPM1A overexpression inhibited both responses. Moreover, phosphate tensin homolog on chromosome 10 depletion in human kidney-2 cells resulted in loss of expression and decreased nuclear levels of PPM1A, which enhanced SMAD3-mediated fibrotic gene induction and growth arrest that were reversed by ectopic PPM1A expression. Thus, phosphate tensin homolog on chromosome 10 is an upstream regulator of renal PPM1A deregulation. These findings establish PPM1A as a novel repressor of the SMAD3 pathway in renal fibrosis and as a new therapeutic target in patients with chronic kidney disease.-Samarakoon, R., Rehfuss, A., Khakoo, N. S., Falke, L. L., Dobberfuhl, A. D., Helo, S., Overstreet, J. M., Goldschmeding, R., Higgins, P. J. Loss of expression of protein phosphatase magnesium-dependent 1A during kidney injury promotes fibrotic maladaptive repair.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta znanošću

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti znanošću
  • Prepoznavanje bilja slikom
  • Interaktivna GPS karta - označite bilje na mjestu (uskoro)
  • Pročitajte znanstvene publikacije povezane s vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoje interese i budite u toku s istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Svi podaci temelje se na objavljenim znanstvenim istraživanjima

Google Play badgeApp Store badge