Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Plant Physiology 2007-May

Mobilisation of nutrients and transport via the xylem sap in a shrub (Ligustrum ovalifolium) during spring growth: N and C compounds and interactions.

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
Veza se sprema u međuspremnik
Vincent Guérin
Lydie Huché-Thélier
Sylvain Charpentier

Ključne riječi

Sažetak

In open-field soilless culture there can be great deal of leaching, particularly in rainy springs. Ligneous plants have the capacity to store large quantities of nutrients in perennial organs. Knowledge of the plant's internal nutrient mobilisation during spring to supply growing organs could lead to reduction of fertiliser application. To quantify the fraction of storage mobilisation available for growth of new organs during spring, Ligustrum ovalifolium shrubs were grown for 2 years with or without fertilisation in the second spring. Nitrogen (N) absorption and N and carbon (C) mobilisation from storage were followed during spring growth via the sap quality. A mathematical combination of the sap composition with flow velocity provided the transported quantities of N and C. Nitrogen and C mobilisation towards new shoots took place during all the spring growth from bud break onwards. In unfertilised plants, C was mobilised primarily as sugars (stachyose, mannose and sucrose) and starch. In fertilised plants, the same sugars were transported in the xylem sap, but at lower concentrations. Stachyose concentration was lower in fertilised than in unfertilised plants and decreased during spring growth. Nitrogen was transported in the xylem sap mainly as amino acids in both fertilisation treatments. Glutamine was the predominant form at bud break and during shoot elongation. In fertilised plants, arginine became predominant after shoot elongation, and was related to low C availability. The interactions of N with C are discussed; specifically, insufficient availability of N limits the use of C, more of which is directed to aerial organs by sap flow.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta znanošću

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti znanošću
  • Prepoznavanje bilja slikom
  • Interaktivna GPS karta - označite bilje na mjestu (uskoro)
  • Pročitajte znanstvene publikacije povezane s vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoje interese i budite u toku s istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Svi podaci temelje se na objavljenim znanstvenim istraživanjima

Google Play badgeApp Store badge