Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
British Journal of Cancer 1995-Apr

Molecular mechanisms of tirapazamine (SR 4233, Win 59075)-induced hepatocyte toxicity under low oxygen concentrations.

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
Veza se sprema u međuspremnik
S Khan
P J O'Brien

Ključne riječi

Sažetak

Previously we showed that tirapazamine (SR 4233, Win 59075) is cytotoxic towards hepatocytes under conditions of hypoxia but not in 10% or 95% oxygen and that bioreduction by DT-diaphorase or cytochrome P450 is not a major pathway. In the present study, we report that tirapazamine is highly cytotoxic to isolated rat hepatocytes maintained under 1% oxygen and the molecular cytotoxic mechanism has been elucidated. Cytotoxicity was prevented by the cytochrome P450 2E1 inhibitors phenyl imidazole, isoniazid, isopropanol or ethanol, suggesting that cytochrome P450 2E1 catalysed tirapazamine reductive bioactivation. By contrast, dicoumarol, a DT-diaphorase inhibitor, markedly increased tirapazamine-induced cytotoxicity. Cytotoxicity was also inhibited in normal but not DT-diaphorase-inactivated hepatocytes by increasing cellular NADH levels with lactate or ethanol or the mitochondrial respiratory inhibitors. Evidence that oxygen activation contributed to cytotoxicity was that glutathione oxidation occurred well before cytotoxicity ensued and that tirapazamine was more cytotoxic towards catalase- or glutathione reductase-inactivated hepatocytes. Furthermore, polyphenolic antioxidants such as quercetin, caffeic acid or purpurogallin, the radical trap Tempol or the iron chelator desferrioxamine prevented tirapazamine-mediated cytotoxicity. However, the antioxidants diphenylphenylenediamine, butylated hydroxyanisole or butylated hydroxytoluene did not prevent cytotoxicity and malonaldehyde formation was not increased, suggesting that lipid peroxidation was not important. The above results suggest that DT-diaphorase detoxifies tirapazamine whereas reduced cytochrome P450 reduces tirapazamine to a nitrogen oxide anion radical which forms cytotoxic reactive oxygen species as a result of redox cycling.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta znanošću

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti znanošću
  • Prepoznavanje bilja slikom
  • Interaktivna GPS karta - označite bilje na mjestu (uskoro)
  • Pročitajte znanstvene publikacije povezane s vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoje interese i budite u toku s istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Svi podaci temelje se na objavljenim znanstvenim istraživanjima

Google Play badgeApp Store badge