Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Phytomedicine 2019-Sep

Novel steroidal saponin isolated from Trillium tschonoskii maxim. exhibits anti-oxidative effect via autophagy induction in cellular and Caenorhabditis elegans models.

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
Veza se sprema u međuspremnik
An-Guo Wu
Jin-Feng Teng
Vincent Wong
Xiao-Gang Zhou
Wen-Qiao Qiu
Yong Tang
Jian-Ming Wu
Rui Xiong
Rong Pan
Yi-Ling Wang

Ključne riječi

Sažetak

Emerging evidences indicate the important roles of autophagy in anti-oxidative stress, which is closely associated with cancer, aging and neurodegeneration.In the current study, we aimed to identify autophagy inducers with potent anti-oxidative effect from traditional Chinese medicines (TCMs) in PC-12 cells and C. elegans.

METHODS
The autophagy inducers were extensively screened in our herbal extracts library by using the stable RFP-GFP-LC3 U87 cells. The components with autophagic induction effect in Trillium tschonoskii Maxim. (TTM) was isolated and identified by using the autophagic activity-guided column chromatography and Pre-HPLC technologies, and MS and NMR spectroscopic analysis, respectively. The anti-oxidative effect of the isolated autophagy inducers was evaluated in H2O2-induced PC-12 cells and C. elegans models by measuring the viability of PC-12 cells and C. elegans, with quantitation on the ROS level in vitro and in vivo using H2DCFDA probe.

RESULTS
The total ethanol extract of TTM was found to significantly increase the formation of GFP-LC3 puncta in stable RFP-GFP-LC3 U87 cells. One novel steroidal saponin 1-O-[2,3,4-tri-O-acetyl-α-L-rhamnopyranosyl-(1→2)-4-O-acetyl-α-L-arabinopyranosyl]-21-Deoxytrillenogenin, (Deoxytrillenoside CA, DTCA) and one known steroidal saponin 1-O-[2,3,4-tri-O-acetyl-α-L-rhamnopyranosyl-(1→2)-4-O-acetyl-α-L-arabinopyranosyl]-21-O-acetyl-epitrillenogenin (Epitrillenoside CA, ETCA) were isolated, identified and found to have novel autophagic effect. Both DTCA and ETCA could activate autophagy in PC-12 cells via the AMPK/mTOR/p70S6K signaling pathway in an Atg7-dependent. In addition, DTCA and ETCA could increase the cell viability and decrease the intracellular ROS level in H2O2-treated PC-12 cells and C. elegans, and the further study demonstrated that the induced autophagy contributes to their anti-oxidative effect.

Our current findings not only provide information on the discovery of novel autophagy activators from TTM, but also confirmed the anti-oxidative effect of the components from TTM both in vitro and in vivo.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta znanošću

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti znanošću
  • Prepoznavanje bilja slikom
  • Interaktivna GPS karta - označite bilje na mjestu (uskoro)
  • Pročitajte znanstvene publikacije povezane s vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoje interese i budite u toku s istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Svi podaci temelje se na objavljenim znanstvenim istraživanjima

Google Play badgeApp Store badge