Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular Neurobiology 2017-Sep

Omics to Explore Amyotrophic Lateral Sclerosis Evolution: the Central Role of Arginine and Proline Metabolism.

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
Veza se sprema u međuspremnik
Franck Patin
Philippe Corcia
Patrick Vourc'h
Lydie Nadal-Desbarats
Thomas Baranek
Jean-François Goossens
Sylviane Marouillat
Anne-Frédérique Dessein
Amandine Descat
Blandine Madji Hounoum

Ključne riječi

Sažetak

In amyotrophic lateral sclerosis (ALS), motor neuron degeneration is associated with systemic metabolic impairment. However, the evolution of metabolism alteration is partially unknown and its link with disease progression has never been described. For the first time, we ran a study focused on (1) the evolution of metabolism disturbance during disease progression through omics approaches and (2) the relation between metabolome profile and clinical evolution. SOD1-G93A (mSOD1) transgenic mice (n = 11) and wild-type (WT) littermates (n = 17) were studied during 20 weeks. Metabolomic profile of muscle and cerebral cortex was analysed at week 20, and plasma samples were assessed at four time points over 20 weeks. The relevant metabolic pathways highlighted by metabolomic analysis were explored by a targeted transcriptomic approach in mice. Plasma metabolomics were also performed in 24 ALS patients and 24 gender- and age-matched controls. Metabolomic analysis of muscle and cerebral cortex enabled an excellent discrimination between mSOD1 and WT mice (p < 0.001). These alterations included especially tryptophan, arginine, and proline metabolism pathways (including polyamines) as also revealed by transcriptomic analysis and findings in ALS patients. Multivariate models performed to explain clinical findings in ALS mice, and patients were excellent (p < 0.01) and highlighted three main metabolic pathways: arginine and proline, tryptophan, and branched amino acid metabolism. This work is the first longitudinal study that evaluates metabolism alteration in ALS, including the analysis of different tissues and using a combination of omics methods. We particularly identified arginine and proline metabolism. This pathway is also associated with disease progression and may open new perspectives of therapeutic targets.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta znanošću

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti znanošću
  • Prepoznavanje bilja slikom
  • Interaktivna GPS karta - označite bilje na mjestu (uskoro)
  • Pročitajte znanstvene publikacije povezane s vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoje interese i budite u toku s istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Svi podaci temelje se na objavljenim znanstvenim istraživanjima

Google Play badgeApp Store badge