Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Pharmacology and Experimental Therapeutics 2005-Oct

Oxidation of anthracyclines by peroxidase metabolites of salicylic Acid.

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
Veza se sprema u međuspremnik
Krzysztof J Reszka
Laura H Britigan
Bradley E Britigan

Ključne riječi

Sažetak

Oxidation of anthracyclines leads to their degradation and inactivation. This process is carried out by peroxidases in the presence of a catalytic cofactor, a good peroxidase substrate. Here, we investigated the effect of salicylic acid, a commonly used anti-inflammatory and analgesic agent, on the peroxidative metabolism of anthracyclines. We report that at pharmacologically relevant concentrations, salicylic acid stimulates oxidation of daunorubicin and doxorubicin by myeloperoxidase and lactoperoxidase systems and that efficacy of the process increases markedly on changing the pH from 7 to 5. This pH dependence is positively correlated with the ease with which salicylic acid itself undergoes metabolic oxidation and involves the neutral form of the acid (pKa = 2.98). When salicylic acid reacted with a peroxidase and H2O2 at acid pH (anthracyclines omitted), a new metabolite with absorption maximum at 412 nm was formed. This metabolite reacted with anthracyclines causing their oxidation. It was tentatively assigned to biphenyl quinone, formed by oxidation of biphenol produced by dimerization of salicylic acid-derived phenoxyl radicals. The formation of this product was inhibited in a concentration-dependent manner by the anthracyclines, suggesting their scavenging of the salicylate phenoxyl radicals. Altogether, this study demonstrates that oxidation of anthracyclines is mediated by peroxidase metabolites of salicylic acid, such as phenoxyl radicals and the biphenol quinone. Given that cancer patients undergoing anthracycline chemotherapy may be administered salicylic acid-based drugs to control pain and fever, our results suggest that liberated salicylic acid could interfere with anticancer and/or cardiotoxic actions of the anthracyclines.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta znanošću

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti znanošću
  • Prepoznavanje bilja slikom
  • Interaktivna GPS karta - označite bilje na mjestu (uskoro)
  • Pročitajte znanstvene publikacije povezane s vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoje interese i budite u toku s istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Svi podaci temelje se na objavljenim znanstvenim istraživanjima

Google Play badgeApp Store badge