Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Cancer & metabolism 2013-Dec

PGC-1α supports glutamine metabolism in breast cancer.

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
Veza se sprema u međuspremnik
Shawn McGuirk
Simon-Pierre Gravel
Geneviève Deblois
David J Papadopoli
Brandon Faubert
André Wegner
Karsten Hiller
Daina Avizonis
Uri David Akavia
Russell G Jones

Ključne riječi

Sažetak

BACKGROUND

Glutamine metabolism is a central metabolic pathway in cancer. Recently, reductive carboxylation of glutamine for lipogenesis has been shown to constitute a key anabolic route in cancer cells. However, little is known regarding central regulators of the various glutamine metabolic pathways in cancer cells.

METHODS

The impact of PGC-1α and ERRα on glutamine enzyme expression was assessed in ERBB2+ breast cancer cell lines with quantitative RT-PCR, chromatin immunoprecipitation, and immunoblotting experiments. Glutamine flux was quantified using 13C-labeled glutamine and GC/MS analyses. Functional assays for lipogenesis were performed using 14C-labeled glutamine. The expression of glutamine metabolism genes in breast cancer patients was determined by bioinformatics analyses using The Cancer Genome Atlas.

RESULTS

We show that the transcriptional coactivator PGC-1α, along with the transcription factor ERRα, is a positive regulator of the expression of glutamine metabolism genes in ERBB2+ breast cancer. Indeed, ERBB2+ breast cancer cells with increased expression of PGC-1α display elevated expression of glutamine metabolism genes. Furthermore, ERBB2+ breast cancer cells with reduced expression of PGC-1α or when treated with C29, a pharmacological inhibitor of ERRα, exhibit diminished expression of glutamine metabolism genes. The biological relevance of the control of glutamine metabolism genes by the PGC-1α/ERRα axis is demonstrated by consequent regulation of glutamine flux through the citric acid cycle. PGC-1α and ERRα regulate both the canonical citric acid cycle (forward) and the reductive carboxylation (reverse) fluxes; the latter can be used to support de novo lipogenesis reactions, most notably in hypoxic conditions. Importantly, murine and human ERBB2+ cells lines display a significant dependence on glutamine availability for their growth. Finally, we show that PGC-1α expression is positively correlated with that of the glutamine pathway in ERBB2+ breast cancer patients, and high expression of this pathway is associated with reduced patient survival.

CONCLUSIONS

These data reveal that the PGC-1α/ERRα axis is a central regulator of glutamine metabolism in ERBB2+ breast cancer. This novel regulatory link, as well as the marked reduction in patient survival time associated with increased glutamine pathway gene expression, suggests that targeting glutamine metabolism may have therapeutic potential in the treatment of ERBB2+ breast cancer.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta znanošću

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti znanošću
  • Prepoznavanje bilja slikom
  • Interaktivna GPS karta - označite bilje na mjestu (uskoro)
  • Pročitajte znanstvene publikacije povezane s vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoje interese i budite u toku s istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Svi podaci temelje se na objavljenim znanstvenim istraživanjima

Google Play badgeApp Store badge