Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
European journal of biochemistry 1985-Dec

Partial purification and some properties of a latent CO2 reductase from green potato tuber chloroplasts.

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
Veza se sprema u međuspremnik
S Arora
N K Ramaswamy
P M Nair

Ključne riječi

Sažetak

We have partially purified the CO2 reductase, present in green potato tuber chloroplasts, as a latent form. Illumination of the chloroplasts in the absence of substrate, bicarbonate, activated the enzyme, which could then be obtained in soluble forms. Purification of the enzyme was achieved by (NH4)2SO4 fractionation (0-30%) and adsorption and elution from a DEAE-Sephadex A-50 column. The final preparation showed 15-fold purification and 50% recovery of the activity. The pH optimum for CO2 reductase was 8.0. Hepes and Tricine buffers showed maximum activity whereas Tris/phosphate or borate failed to show any activity. The enzyme reaction was sensitive to the presence of metal ions like Fe3+, Hg2+, Cu2+, Mo6+ and Zn2+, however, a threefold activation was observed with Fe2+. The metal requirement for CO2 reductase was evident from the observed inhibition by metal chelators like o-phenanthroline, alpha, alpha'-dipyridyl, bathocuproine, 8-hydroxyquinoline etc. Out of these o-phenanthroline was the strongest inhibitor and its concentration for 50% inhibition was 40 microM. The presence of Fe2+ ions in the reaction mixture protected the enzyme from heat denaturation upto 50 degrees C. Maximum enzyme activity was observed at 15 degrees C. The enzyme activity showed a 30-s lag period and the maximum was reached in 90 s. Supplementation of sodium dithionite in the reaction activated enzyme activity threefold, suggesting involvement of dithiol groups in the catalytic activity. There was strong inhibition by -SH inhibitors like 5,5'-dithiobis(2-nitrobenzoic acid) and N-ethylmaleimide and -SH reagents like dithiothreitol, 2-mercaptoethanol and cysteine. Various nucleotide coenzyme tried inhibited the enzyme strongly.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta znanošću

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti znanošću
  • Prepoznavanje bilja slikom
  • Interaktivna GPS karta - označite bilje na mjestu (uskoro)
  • Pročitajte znanstvene publikacije povezane s vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoje interese i budite u toku s istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Svi podaci temelje se na objavljenim znanstvenim istraživanjima

Google Play badgeApp Store badge