Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology and Biochemistry 2015-Jun

Root architecture and morphometric analysis of Arabidopsis thaliana grown in Cd/Cu/Zn-gradient agar dishes: A new screening technique for studying plant response to metals.

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
Veza se sprema u međuspremnik
Rocco Bochicchio
Adriano Sofo
Roberto Terzano
Concetta Eliana Gattullo
Mariana Amato
Antonio Scopa

Ključne riječi

Sažetak

A new screening strategy using Petri dishes with a gradient of distances between germinating seeds and a metal-contaminated medium was used for studying alterations in root architecture and morphology of Arabidopsis thaliana treated with cadmium, copper and zinc at sub-toxic concentrations. Metal concentrations in the dishes were determined by anodic stripping voltammetry on digested agar samples collected along the gradient, and kriging statistical interpolation method was performed. After two weeks, all agar dishes were scanned at high resolution and the root systems analyzed. In the presence of all the three metals, primary root length did not significantly change compared to controls, excepting for zinc applied alone (+45% of controls). In metal-treated seedlings, root system total length increased due to the higher number of lateral roots. The seedlings closer to the agar sectors including metals showed a marked curvature and a higher root branching in comparison to those further away from the metals. This behavior, together with an observed increase in root diameter in metal-treated seedlings could be interpreted as compensatory growth, and a thicker roots could act as a barrier to protect root from the metals. We therefore propose that the remodeling of the root architecture in response to metals could be a pollution 'escaping strategy' aimed at seeking metal-free patches.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta znanošću

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti znanošću
  • Prepoznavanje bilja slikom
  • Interaktivna GPS karta - označite bilje na mjestu (uskoro)
  • Pročitajte znanstvene publikacije povezane s vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoje interese i budite u toku s istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Svi podaci temelje se na objavljenim znanstvenim istraživanjima

Google Play badgeApp Store badge