Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Bioorganic and Medicinal Chemistry Letters 2010-Sep

Structure-based engineering of benzalacetone synthase.

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
Veza se sprema u međuspremnik
Yoshihiko Shimokawa
Hiroyuki Morita
Ikuro Abe

Ključne riječi

Sažetak

Benzalacetone synthase (BAS) and chalcone synthase (CHS) are plant-specific type III polyketide synthases (PKSs), sharing 70% amino acid sequence identity and highly homologous overall protein structures. BAS catalyzes the decarboxylative coupling of 4-coumaroyl-CoA with malonyl-CoA to produce the diketide benzalacetone, whereas CHS produces the tetraketide chalcone by iterative condensations with three molecules of malonyl-CoA, and folding the resulting intermediate into a new aromatic ring system. Recent crystallographic analyses of Rheum palmatum BAS revealed that the characteristic substitution of Thr132 (numbering of Medicago sativa CHS2), a conserved CHS residue lining the active-site cavity, with Leu causes steric contraction of the BAS active-site to produce the diketide, instead of the tetraketide. To test this hypothesis, we constructed a set of R. palmatum BAS site-directed mutants (L132G, L132A, L132S, L132C, L132T, L132F, L132Y, L132W and L132P), and investigated the mechanistic consequences of the point mutations. As a result, the single amino acid substitution L132T restored the chalcone-forming activity in BAS, whereas the Ala, Ser, and Cys substitutions expanded the product chain length to produce 4-coumaroyltriacetic acid lactone (CTAL) after three condensations with malonyl-CoA, but without the formation of the aromatic ring system. Homology modeling suggested that this is probably caused by the restoration of the 'coumaroyl binding pocket' in the active-site cavity. These findings provide further insights into the structural details of the catalytic mechanism of the type III PKS enzymes.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta znanošću

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti znanošću
  • Prepoznavanje bilja slikom
  • Interaktivna GPS karta - označite bilje na mjestu (uskoro)
  • Pročitajte znanstvene publikacije povezane s vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoje interese i budite u toku s istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Svi podaci temelje se na objavljenim znanstvenim istraživanjima

Google Play badgeApp Store badge