Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Phytoremediation 2017-Feb

Subcellular distribution and chemical forms of antimony in Ficus tikoua.

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
Veza se sprema u međuspremnik
Yong Wang
Liyuan Chai
Zhihui Yang
Hussani Mubarak
Ruiyang Xiao
Chongjian Tang

Ključne riječi

Sažetak

Ficus tikoua (F. tikoua) was a potential species for antimony (Sb) phytoremediation due to its wide growth in the mining area. However, little was known about its tolerance mechanisms toward Sb. The determination of the distribution and chemical speciation of Sb in F. tikoua is essential for understanding the mechanisms involved in Sb accumulation, transportation, and detoxification. The present study investigated the subcellular distribution and chemical forms of Sb in F. tikoua. The plant was exposed to different Sb concentrations (0, 30, 90, and 180 μmol/L) for 30 days. The results showed that F. tikoua possessed a marked ability to tolerate and accumulate Sb. The proportional Sb increased with increasing Sb concentration in the solution, and the highest Sb concentration occurred in roots (1274.5-1580.9 mg/kg), followed by stems (133.5-498.9 mg/kg) and leaves (4.1-15.7 mg/kg). In the subcellular sequestration of Sb in F. tikoua, the largest accumulation of Sb occurred in cell walls (72.4-87.5%) followed by cytoplasmic organelles (8.2-18.6%) and cytoplasmic supernatant. The results suggested that cell walls act as important protective barriers against Sb toxicity in F. tikoua. Although Sb in all plant tissues found primarily in the fractions extracted by ethanol and distilled water, the current study found that the Sb amounts in the HAc-extractable fraction, HCl-extractable fraction, and residue fraction increased at the highest Sb level (180 μmol/L) compared to that under lower Sb levels. These results indicate that excessive Sb accumulated in F. tikoua under Sb stress is bound to non-dissolved or low-bioavailable compounds, a biochemical mechanism that benefits F. tikoua because it helps alleviate Sb toxicity.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta znanošću

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti znanošću
  • Prepoznavanje bilja slikom
  • Interaktivna GPS karta - označite bilje na mjestu (uskoro)
  • Pročitajte znanstvene publikacije povezane s vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoje interese i budite u toku s istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Svi podaci temelje se na objavljenim znanstvenim istraživanjima

Google Play badgeApp Store badge