Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Experimental and Therapeutic Medicine 2017-Sep

Tetramethylpyrazine reduces blood-brain barrier permeability associated with enhancement of peripheral cholinergic anti-inflammatory effects for treating traumatic brain injury.

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
Veza se sprema u međuspremnik
Aimin Wang
Guangbin Zhu
Ping Qian
Tao Zhu

Ključne riječi

Sažetak

Traumatic brain injury (TBI) is a diverse group of intracranial injuries resulting from external mechanical insults to the brain. While basic and clinical research for TBI has been conducted for decades, it has not identified cost-effective medical interventions for treating TBI. Tetramethylpyrazine (TMP), which is derived from the Chinese herb, Ligusticum chuanxiong Hort (Chuan Xiong), has been clinically used for treating ischemic brain injury for years. However, whether TMP could provide effective benefits for improving the outcomes following TBI is unknown. In the present study, using controlled cortical impact (CCI) injury to create an animal model of TBI, the potential effects of TMP on improving blood-brain barrier (BBB) permeability in the early phase of the secondary injury, as well as the splenic anti-inflammatory activities, were evaluated. Cognitive functions were also assessed by Morris water maze trials following TBI. Results demonstrated that, at 24 h after CCI injury, BBB permeability was significantly reduced (P<0.05) by the application of TMP. In addition, within 24 h after CCI injury, the plasma levels of interleukin (IL)-1β and tumor necrosis factor (TNF)-α, and protein and mRNA expression levels of IL-1β and TNF-α in the spleen were significantly lowered by TMP (P<0.05). Furthermore, within 24 h after CCI injury, the activation of the splenic anti-inflammatory effects mediated by nicotinic acetylcholine receptor α7 (nAChRa7) stimulation were significantly enhanced by TMP (P<0.05). Additionally, impaired spatial memory acquisition and consolidation were significantly improved by TMP after CCI injury (P<0.05). Together, in light of these data, in the treatment of TBI, TMP could effectively reduce BBB permeability, which may be closely associated with the enhanced splenic anti-inflammatory effects activated by nAChRa7 stimulation, and potentially improve cognitive recovery concerning spatial learning and memory.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta znanošću

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti znanošću
  • Prepoznavanje bilja slikom
  • Interaktivna GPS karta - označite bilje na mjestu (uskoro)
  • Pročitajte znanstvene publikacije povezane s vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoje interese i budite u toku s istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Svi podaci temelje se na objavljenim znanstvenim istraživanjima

Google Play badgeApp Store badge