Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
AAPS PharmSciTech 2019-Jan

The Impact of Serum Proteins and Surface Chemistry on Magnetic Nanoparticle Colloidal Stability and Cellular Uptake in Breast Cancer Cells.

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
Veza se sprema u međuspremnik
Wid Mekseriwattana
Supreeya Srisuk
Ruttanaporn Kriangsaksri
Nuttawee Niamsiri
Kanlaya Prapainop

Ključne riječi

Sažetak

Superparamagnetic iron oxide nanoparticles (SPIONs) have been extensively studied in biomedical applications for therapeutic or diagnostic purposes. Stability is one of the key determinants dictating successful application of these nanoparticles (NPs) in biological systems. In this study, SPIONs were synthesized and coated with two protective shells-poly(methacrylic acid) (PMAA) or citric acid (CA)-and the stability was evaluated in biologically relevant media together with effect of serum protein supplementation. The stabilities of SPION, SPION-PMAA and SPION-CA in water, DMEM, RPMI, DMEM with 10% (v v-1), and RPMI with 10% (v v-1) fetal bovine serum were determined. Without protective shells, the NPs were not stable and formed large aggregates in all media tested. CA improved the stability of the NPs in water, but was not very effective in improving stability in cell culture media. Addition of serum slightly improved colloidal stability of SPION-CA, whereas inclusion of serum significantly improved the colloidal stability of SPION-PMAA. Serum proteins also found to enhance cellular viability of MCF-7 breast cancer cells after exposure to high concentrations of SPION-PMAA and SPION-CA. Different patterns of serum proteins binding to the NPs were observed, and cellular uptake in MCF-7 cells were investigated. The stabilized SPION-PMAA and SPION-CA NPs showed uptake activity with minimal background attachment. Therefore, the importance of colloidal stability of SPIONs for utilizing in future therapeutic or diagnostic purposes is illustrated.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta znanošću

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti znanošću
  • Prepoznavanje bilja slikom
  • Interaktivna GPS karta - označite bilje na mjestu (uskoro)
  • Pročitajte znanstvene publikacije povezane s vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoje interese i budite u toku s istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Svi podaci temelje se na objavljenim znanstvenim istraživanjima

Google Play badgeApp Store badge