Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 2007-Apr

The transiently generated nonphotochemical quenching of excitation energy in Arabidopsis leaves is modulated by zeaxanthin.

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
Veza se sprema u međuspremnik
Ljudmila Kalituho
Karl Christian Beran
Peter Jahns

Ključne riječi

Sažetak

Upon the transition of dark-adapted plants to low light, the energy-dependent quenching (qE) of excitation energy is only transiently induced due to the only transient generation of the transthylakoid pH gradient. We investigated the transient qE (qE(TR)) in different Arabidopsis (Arabidopsis thaliana) mutants. In dark-adapted plants, qE(TR) was absent in the npq4 mutant (deficient in the PsbS protein) and the pgr1 mutant (restricted in lumen acidification). In comparison with wild-type plants, qE(TR) was reduced in the zeaxanthin (Zx)-deficient npq1 mutant and increased in the Zx-accumulating npq2 mutant. After preillumination of plants (to allow the synthesis of large amounts of Zx), the formation and relaxation of qE(TR) was accelerated in all plants (except for npq4) in comparison with the respective dark-adapted plants. The extent of qE(TR), however, was unchanged in npq1 and npq4, decreased in npq2, but increased in wild-type and pgr1 plants. Even in presence of high levels of Zx, qE(TR) in pgr1 mutants was still lower than that in wild-type plants. In the presence of the uncoupler nigericin, qE(TR) was completely abolished in all genotypes. Thus, the transient qE(TR) shows essentially the same characteristics as the steady-state qE; it is strictly dependent on the PsbS protein and a low lumen pH, but the extent of qE(TR) is largely modulated by Zx. These results indicate that qE(TR) does not represent a different quenching mechanism in comparison with the steady-state qE, but simply reflects the response of qE to the dynamics of the lumen pH during light activation of photosynthesis.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta znanošću

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti znanošću
  • Prepoznavanje bilja slikom
  • Interaktivna GPS karta - označite bilje na mjestu (uskoro)
  • Pročitajte znanstvene publikacije povezane s vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoje interese i budite u toku s istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Svi podaci temelje se na objavljenim znanstvenim istraživanjima

Google Play badgeApp Store badge