Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Tree Physiology 2006-Apr

Tradeoff between shade adaptation and mitigation of photoinhibition in leaves of Quercus mongolica and Acer mono acclimated to deep shade.

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
Veza se sprema u međuspremnik
Mitsutoshi Kitao
Thomas T Lei
Takayoshi Koike
Hiroyuki Tobita
Yutaka Maruyama

Ključne riječi

Sažetak

We investigated susceptibility to photoinhibition in leaves acclimated to different light regimes in intermediately shade-tolerant Japanese oak (Quercus mongolica Fisch. ex Turcz. var. crispula (Blume) Ohashi) and shade-tolerant Japanese maple (Acer mono Maxim. var. glabrum (Lév. et Van't.) Hara), to elucidate adaptability to gap formation in leaves differing in shade acclimation. We hypothesized that there is a tradeoff between shade adaptation and capacity to mitigate photoinhibition associated with leaf morphology. We simultaneously measured chlorophyll fluorescence and gas exchange in seedlings that had been grown in full sunlight (open), 10% of full sun (moderate shade) and 5% of full sun (deep shade). Shade-tolerant A. mono adapted to deep shade through changes in leaf morphology, lowering its leaf mass per area (LMA), but Q. mongolica showed little change in LMA between moderate and deep shade. Photochemical quenching (qP) did not differ between species in full sunlight and moderate shade; however, in deep shade, qP of Q. mongolica was higher than that of A. mono, suggesting that Q. mongolica grown in deep shade is less susceptible to photoinhibition at gap formation. This is consistent with the finding that chronic photoinhibition 3 days after the transfer to full sunlight, indicated by the decrease in maximum photochemical efficiency, Fv/Fm, at predawn, was less in deep-shade-grown Q. mongolica than in deep shade-grown A. mono. In deep shade, the electron transport rate (ETR) of Q. mongolica was higher than that of A. mono, whereas thermal energy dissipation through photosystem II antennae, indicated by non-photochemical quenching, was lower in Q. mongolica than in A. mono. In deep shade, the greater ETR capacity in Q. mongolica in association with higher LMA and higher leaf N content could contribute to maintaining high qP and mitigating photoinhibition. These results indicate that, by maintaining a high electron transport capacity even in deep shade, the gap-dependent and intermediate-shade-tolerant Q. mongolica trades improved shade adaptation for higher growth potential when a gap event occurs.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta znanošću

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti znanošću
  • Prepoznavanje bilja slikom
  • Interaktivna GPS karta - označite bilje na mjestu (uskoro)
  • Pročitajte znanstvene publikacije povezane s vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoje interese i budite u toku s istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Svi podaci temelje se na objavljenim znanstvenim istraživanjima

Google Play badgeApp Store badge