Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
PLoS ONE 2020-May

Characterization of the intestinal absorption of morroniside from Cornus officinalis Sieb. et Zucc via a Caco-2 cell monolayer model

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
Veza se sprema u međuspremnik
Renjie Xu
Hongdan Zhu
Lingmin Hu
Beimeng Yu
Xiaohua Zhan
Yichu Yuan
Ping Zhou

Ključne riječi

Sažetak

Morroniside is a biologically active polyphenol found in Cornus officinalis Sieb. et Zucc (CO) that exhibits a broad spectrum of pharmacological activities, such as protecting nerves, and preventing diabetic liver damage and renal damage. However, little data are available regarding the mechanism of its intestinal absorption. Here, an in vitro human intestinal epithelial cell model of cultured Caco-2 cells was applied to study the absorption and transport of morroniside. The effects of donor concentration, pH and inhibitors were investigated. The bidirectional permeability of morroniside from the apical (AP) to the basolateral (BL) side and in the reverse direction was studied. When administered at three tested concentrations (5, 25 and 100 μM), the apparent permeability coefficient (Papp) values in the AP-to-BL direction ranged from 1.59 × 10-6 to 2.66 × 10-6 cm/s. In the reverse direction, BL-to-AP, the value was ranged from 2.67 × 10-6 to 4.10 × 10-6 cm/s. The data indicated that morroniside transport was pH-dependent. The permeability of morroniside was affected by treatment with various inhibitors, such as multidrug resistance protein inhibitors MK571 and indomethacin, as well as the breast cancer resistance protein inhibitor apigenin. The mechanisms of the intestinal absorption of morroniside may involve multiple transport pathways, such as the passive diffusion and efflux protein-mediated active transport especially involving multidrug resistance protein 2 and breast cancer resistance protein. After the addition of CO, the Papp values in the AP-to-BL direction increased significantly, therefore, it can be assumed that some ingredients in the CO promote morroniside absorption in the small intestine.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta znanošću

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti znanošću
  • Prepoznavanje bilja slikom
  • Interaktivna GPS karta - označite bilje na mjestu (uskoro)
  • Pročitajte znanstvene publikacije povezane s vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoje interese i budite u toku s istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Svi podaci temelje se na objavljenim znanstvenim istraživanjima

Google Play badgeApp Store badge