Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Oncology Letters 2020-Sep

Konjac glucomannan reverses multi-drug resistance of HepG2/5-FU cells by suppressing AKT signaling and increasing p53 expression

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
Veza se sprema u međuspremnik
Bin Chen
Xin Xu
Ke Zheng
Ling Liu
Yijun Yu
Ying Xin

Ključne riječi

Sažetak

The multi-drug resistance (MDR) of cancer cells, including 5-fluorouracil (5-FU) resistance, has been a serious problem for patients with cancer. The present study aimed to investigate the reversal effects of konjac glucomannan on multi-drug resistance of HepG2/5-FU cells. In the present study, MTT assay was used to investigate the effects of 5-FU and konjac glucomannan (KGM) on the viability of HepG2/5-FU cells. Reverse transcription-quantitative PCR and western blotting were performed to determine the effects of 5-FU and KGM on the expression of MDR-associated genes including MDR1 and P-glycoprotein 1 (P-gp 1), and to analyze the effects of 5-FU and KGM on the levels of cell proliferation-related genes, including cyclin A, cyclin B1 and CDK2, and apoptosis-related genes, including caspase-3, Bax and BCL-2. Annexin V/propidium iodide staining was performed to determine the apoptotic rate of HepG2/5-FU. Furthermore, the xenograft tumor model was established in nude mice to investigate the in vivo tumor growth by detecting tumor size, volume and tumor weight. KGM significantly decreased the viability of HepG2/5-FU cells in the presence of 5-FU. KGM downregulated the mRNA and protein expression of MDR and P-gp, and inhibited the mRNA and protein expression of cyclin A, cyclin B1 and CDK2. In addition, KGM significantly suppressed BCL-2 expression and increased the expression of cleaved caspase-3 and Bax, resulting in a higher apoptotic rate of HepG2/5-FU cells. Furthermore, KGM suppressed AKT phosphorylation and upregulated p53 expression. Notably, KGM significantly inhibited the growth of HepG2/5-FU in nude mice. KGM may be a promising agent against the resistance of HepG2/5-FU cells to 5-FU by suppressing AKT signaling and increasing p53 expression.

Keywords: AKT; HepG2/5-FU; Konjac glucomannan; apoptosis; multi-drug resistance.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta znanošću

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti znanošću
  • Prepoznavanje bilja slikom
  • Interaktivna GPS karta - označite bilje na mjestu (uskoro)
  • Pročitajte znanstvene publikacije povezane s vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoje interese i budite u toku s istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Svi podaci temelje se na objavljenim znanstvenim istraživanjima

Google Play badgeApp Store badge