Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Bioactive Materials 2020-Oct

Significant difference between sirolimus and paclitaxel nanoparticles in anti-proliferation effect in normoxia and hypoxia: The basis of better selection of atherosclerosis treatment

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
Veza se sprema u međuspremnik
Youlu Chen
Yong Zeng
Xiaowei Zhu
Lifu Miao
Xiaoyu Liang
Jianwei Duan
Huiyang Li
Xinxin Tian
Liyun Pang
Yongxiang Wei

Ključne riječi

Sažetak

Compared with paclitaxel, sirolimus has been more used in the treatment of vascular restenosis gradually as an anti-proliferative drug, but few basic studies have elucidated its mechanism. The anti-proliferative effects of sirolimus or paclitaxel have been demonstrated by numerous studies under normoxia, but few studies have been achieved focusing hypoxia. In this study, porcine carotid artery injury model and classical cobalt chloride hypoxia cell model were established. Sirolimus nanoparticles (SRM-NPs), paclitaxel nanoparticles (PTX-NPs) and blank nanoparticles (Blank-NPs) were prepared respectively. The effect of RPM-NPs on the degree of stenosis, proliferative index and the expression of PCNA after 28 days of porcine carotid artery injury model was evaluated. Compared with saline group and SRM groups, SRM-NPs group suppressed vascular stenosis, proliferative index and the expression of PCNA (P < 0.01 and P < 0.05). Endothelial cell (EC) and smooth muscle cell (SMC) were pre-treated with cobaltous chloride, followed by SRM-NPs, PTX-NPs, Blank-NPs or PBS control treating, the effects on cell proliferation, HIF-1 expression and glycolysis were detected. SRM-NPs could inhibit EC and SMC proliferation under hypoxia, while PTX-NPs couldn't (P < 0.001). Significant differences between sirolimus and paclitaxel NPs in anti-proliferation effect under normoxia and hypoxia may due to the different inhibitory effects on HIF-1α expression and glycolysis. In conclusion, these results suggest that sirolimus can inhibit the proliferation of hypoxic cells more effectively than paclitaxel. These observations may provide a basis for understanding clinical vascular stenosis therapeutic differences between rapamycin and paclitaxel.

Keywords: Atherosclerosis; Glycolysis; HIF-1α; Hypoxia; Paclitaxel; Sirolimus.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta znanošću

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti znanošću
  • Prepoznavanje bilja slikom
  • Interaktivna GPS karta - označite bilje na mjestu (uskoro)
  • Pročitajte znanstvene publikacije povezane s vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoje interese i budite u toku s istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Svi podaci temelje se na objavljenim znanstvenim istraživanjima

Google Play badgeApp Store badge