Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

alkanes c2 c4/uročnjak

Veza se sprema u međuspremnik
ČlanciKlinička ispitivanjaPatenti
Stranica 1 iz 55 rezultatima

Production of alkanes from CO2 by engineered bacteria.

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
UNASSIGNED Microbial biosynthesis of alkanes is considered a promising method for the sustainable production of drop-in fuels and chemicals. Carbon dioxide would be an ideal carbon source for these production systems, but efficient production of long carbon chains from CO2 is difficult to achieve in
Tapetosomes are abundant organelles in tapetum cells during the active stage of pollen maturation in Brassicaceae species. They possess endoplasmic reticulum (ER)-derived vesicles and oleosin-coated lipid droplets, but their overall composition and function have not been established. In situ
Most aerial surfaces of plants are covered by cuticular wax that is synthesized in epidermal cells. The wax mixture on the inflorescence stems of Arabidopsis (Arabidopsis thaliana) is dominated by alkanes, secondary alcohols, and ketones, all thought to be formed sequentially in the decarbonylation
Land plant aerial organs are covered by a hydrophobic layer called the cuticle that serves as a waterproof barrier protecting plants against desiccation, ultraviolet radiation, and pathogens. Cuticle consists of a cutin matrix as well as cuticular waxes in which very-long-chain (VLC) alkanes are the

The CER22 gene required for the synthesis of cuticular wax alkanes in Arabidopsis thaliana is allelic to CER1.

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
Cuticular waxes coat the primary aerial tissues of land plants and serve as a protective barrier against non-stomatal water loss and various environmental stresses. Alkanes are the most prominent cuticular wax components and are thought to have an important role in controlling permeability of the

Arabidopsis CER1-LIKE1 Functions in a Cuticular Very-Long-Chain Alkane-Forming Complex.

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
Plant aerial organs are coated with cuticular waxes, a hydrophobic layer that primarily serves as a waterproofing barrier. Cuticular wax is a mixture of aliphatic very-long-chain molecules, ranging from 22 to 48 carbons, produced in the endoplasmic reticulum of epidermal cells. Among all wax
Cuticle waxes, which are primarily comprised of very-long-chain (VLC) alkanes, play an important role in plant reproductive development. ECERIFERUM1 (CER1) is recognized as the core element for VLC alkane biosynthesis in Arabidopsis (Arabidopsis thaliana). However, genes involved in the VLC alkane
In land plants, very-long-chain (VLC) alkanes are major components of cuticular waxes that cover aerial organs, mainly acting as a waterproof barrier to prevent nonstomatal water loss. Although thoroughly investigated, plant alkane synthesis remains largely undiscovered. The Arabidopsis thaliana
Cuticular wax accumulation and composition affects drought resistance in plants. Brachypodium distachyon plants subjected to water deficit and polyethylene glycol treatments resulted in a significant increase in total wax load, in which very-long-chain (VLC) alkanes were more sensitive to

Microbial production of short-chain alkanes.

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
Increasing concerns about limited fossil fuels and global environmental problems have focused attention on the need to develop sustainable biofuels from renewable resources. Although microbial production of diesel has been reported, production of another much in demand transport fuel, petrol

Isolation and characterization of eceriferum (cer) mutants induced by T-DNA insertions in Arabidopsis thaliana.

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
Thirteen Arabidopsis thaliana mutants with deviating epicuticular wax layers (i.e., cer mutants) were isolated by screening 13 000 transformed lines produced by the seed transformation method. After crossing the 13 mutants to some of the previously known cer mutant lines, 12 of our mutants mapped to
Colloidal silver laser desorption/ionization (LDI) mass spectrometry (MS) was employed to directly profile and image epicuticular wax metabolites on a variety of different surfaces of Arabidopsis thaliana leaves and flowers. Major cuticular wax compounds, such as very long-chain fatty acids,
High-spatial resolution and high-mass resolution techniques are developed and adopted for the mass spectrometric imaging of epicuticular lipids on the surface of Arabidopsis thaliana. Single cell level spatial resolution of approximately 12 mum was achieved by reducing the laser beam size by using

CYP86A1 from Arabidopsis thaliana encodes a cytochrome P450-dependent fatty acid omega-hydroxylase.

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
The A. thaliana EST database was screened using consensus motifs derived from P450 families CYP52 and CYP4 catalyzing the omega-hydroxylation of fatty acids and alkanes in Candida and in mammals. One EST cDNA fragment was detected in this way and the corresponding full-length cDNA was cloned from a
Aim of present work was to assess in-planta association potential of isolated endophytic bacterial strain Pseudomonas sp. (J10) (KY608252) with two cultivars of Lolium perenne L. (small & jumbo) and Arabidopsis thaliana L. for total petroleum hydrocarbon (TPH) degradation, alkane monooxygenase
Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta znanošću

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti znanošću
  • Prepoznavanje bilja slikom
  • Interaktivna GPS karta - označite bilje na mjestu (uskoro)
  • Pročitajte znanstvene publikacije povezane s vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoje interese i budite u toku s istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Svi podaci temelje se na objavljenim znanstvenim istraživanjima

Google Play badgeApp Store badge