Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

amide/moždani udar

Veza se sprema u međuspremnik
Stranica 1 iz 110 rezultatima

PURPOSE
Amide proton transfer (APT) MRI is promising to serve as a surrogate metabolic imaging biomarker of acute stroke. Although the magnetization transfer ratio asymmetry (MTRasym ) has been used commonly, the origin of pH-weighted MRI effect remains an area of
Chemical exchange saturation transfer (CEST) potentially provides the ability to detect small solute pools through indirect measurements of attenuated water signals. However, CEST effects may be diluted by various competing effects, such as non-specific magnetization transfer (MT) and asymmetric MT
pH-sensitive amide proton transfer (APT) MRI provides a surrogate metabolic biomarker that complements the widely-used perfusion and diffusion imaging. However, the endogenous APT MRI is often calculated using the asymmetry analysis (MTRasym), which is susceptible to an inhomogeneous shift due to
Recent studies suggest that myeloperoxidase (MPO)-dependent oxidative stress plays a significant role in brain injury in stroke patients. We previously showed that N-acetyl lysyltyrosylcysteine amide (KYC), a novel MPO inhibitor, significantly decreased infarct size, blood-brain barrier leakage,
pH-weighted amide proton transfer (APT) MRI is sensitive to tissue pH change during acute ischemia, complementing conventional perfusion and diffusion stroke imaging. However, the currently used pH-weighted magnetization transfer (MT) ratio asymmetry (MTRasym) analysis is of limited pH

[Preliminary application of amide proton transfer imaging signal in acute ischemic stroke].

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
OBJECTIVE To apply amide proton transfer magnetic resonance imaging (APT-MRI) technique to acute ischemic stroke, and to discuss clinical values of the APT-MRI main parameter - MTRasym(3.5 ppm). METHODS A total of 18 emergency admitted patients, with acute ischemic stroke from Beijing Hospital, were
pH-weighted amide proton transfer (APT) MRI is promising to serve as a new surrogate metabolic imaging biomarker for refined ischemic tissue demarcation. APT MRI with pulse-RF irradiation (pulse-APT) is an alternative to the routine continuous wave (CW-) APT MRI that overcomes the RF

Quantitative CEST imaging of amide proton transfer in acute ischaemic stroke.

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
Amide proton transfer (APT) imaging may help identify the ischaemic penumbra in stroke patients, the classical definition of which is a region of tissue around the ischaemic core that is hypoperfused and metabolically stressed. Given the potential of APT imaging to complement existing

Release of fatty acid amides in a patient with hemispheric stroke: a microdialysis study.

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
BACKGROUND Excitotoxic insults such as stroke may induce release of fatty acid ethanolamides (FAEs), contributing to the downstream events in the ischemic cascade. We therefore studied release of FAEs such as anandamide, palmitylethanolamide (PEA), and oleylethanolamide (OEA) in the brain of a

Relaxation-compensated fast multislice amide proton transfer (APT) imaging of acute ischemic stroke.

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
Amide proton transfer (APT) imaging is a variant form of chemical exchange saturation transfer (CEST) imaging that is based on the magnetization exchange between bulk water and labile endogenous amide protons. Given that chemical exchange is pH-dependent, APT imaging has been shown capable of

PURPOSE
The magnetization transfer and relaxation normalized amide proton transfer (MRAPT) analysis is promising to provide a highly pH-specific mapping of tissue acidosis, complementing commonly used CEST asymmetry analysis. We aimed to develop a fast B0 inhomogeneity
Background: Amide proton transfer (APT) MR imaging has shown great potential in the evaluation of stroke severity because of its sensitivity to acid environments. However, this promising MRI technique has not been used to assess treatment efficacy with regard to stroke recovery.
Oxidative stress plays an important and causal role in the mechanisms by which ischemia/reperfusion (I/R) injury increases brain damage after stroke. Accordingly, reducing oxidative stress has been proposed as a therapeutic strategy for limiting damage in the brain after stroke. Myeloperoxidase
Growth factors promote plasticity in injured brain and improve impaired functions. For clinical application, efficient approaches for growth factor delivery into the brain are necessary. Poly(ester amide) (PEA)-derived microspheres (MS) could serve as vehicles due to their thermal and mechanical
The ischemic tissue becomes acidic after initiation of anaerobic respiration, which may result in impaired tissue metabolism and, ultimately, in severe tissue damage. Although changes in the major cerebral metabolites can be studied using magnetic resonance (MR) spectroscopy (MRS)-based techniques,
Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta znanošću

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti znanošću
  • Prepoznavanje bilja slikom
  • Interaktivna GPS karta - označite bilje na mjestu (uskoro)
  • Pročitajte znanstvene publikacije povezane s vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoje interese i budite u toku s istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Svi podaci temelje se na objavljenim znanstvenim istraživanjima

Google Play badgeApp Store badge