Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

zeaxanthin/talijin uročnjak

Veza se sprema u međuspremnik
ČlanciKlinička ispitivanjaPatenti
Stranica 1 iz 126 rezultatima

Dissecting and modeling zeaxanthin- and lutein-dependent nonphotochemical quenching in Arabidopsis thaliana.

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
Photosynthetic organisms use various photoprotective mechanisms to dissipate excess photoexcitation as heat in a process called nonphotochemical quenching (NPQ). Regulation of NPQ allows for a rapid response to changes in light intensity and in vascular plants, is primarily triggered by a pH
The abscisic-acid-deficient aba-1 mutant of Arabidopsis thaliana is unable to epoxidize zeaxanthin. As a consequence, it contains large amounts of this carotenoid and lacks epoxy-xanthophylls. HPLC analysis of pigment contents in leaves, isolated thylakoids and preparations of the major
The epoxidation of zeaxanthin (Zx) to violaxanthin after exposure to different light stress conditions has been studied in Arabidopsis (Arabidopsis thaliana). Formation of Zx was induced by illumination of intact leaves for up to 8 h at different light intensities and temperatures. The kinetics of
Nonphotochemical quenching (NPQ) is the process that protects the photosynthetic apparatus of plants and algae from photodamage by dissipating as heat the energy absorbed in excess. Studies on NPQ have almost exclusively focused on photosystem II (PSII), as it was believed that NPQ does not occur in
BACKGROUND Reactive oxygen species (ROS) are unavoidable by-products of oxygenic photosynthesis, causing progressive oxidative damage and ultimately cell death. Despite their destructive activity they are also signalling molecules, priming the acclimatory response to stress stimuli. RESULTS To
Abscisic acid (ABA) is a plant hormone which plays an important role in seed development and dormancy and in plant response to environmental stresses. An ABA-deficient mutant of Nicotiana plumbaginifolia, aba2, was isolated by transposon tagging using the maize Activator transposon. The aba2 mutant
Plants protect themselves from excess absorbed light energy through thermal dissipation, which is measured as nonphotochemical quenching of chlorophyll fluorescence (NPQ). The major component of NPQ, qE, is induced by high transthylakoid DeltapH in excess light and depends on the xanthophyll cycle,
Zeaxanthin epoxidase (ZE, E.C. 1.14.13.90), an enzyme belonging to the lipocalin superfamily, catalyses the conversion of zeaxanthin to antheraxanthin and violaxanthin. These reactions are part of the xanthophyll biosynthetic pathway and the xanthophyll cycle. The role of carotenoids in the
The two Arabidopsis thaliana mutants, aba1 and max4, were previously identified as sharing a number of co-regulated genes with both the flu mutant and Arabidopsis cell suspension cultures exposed to high light (HL). On this basis, we investigated whether aba1 and max4 were generating high amounts of
In green plants, the xanthophyll carotenoid zeaxanthin is synthesized transiently under conditions of excess light energy and participates in photoprotection. In the Arabidopsis lut2 npq2 double mutant, all xanthophylls were replaced constitutively by zeaxanthin, the only xanthophyll whose synthesis

Photoprotection in a zeaxanthin- and lutein-deficient double mutant of Arabidopsis.

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
When light absorption by a plant exceeds its capacity for light utilization, photosynthetic light harvesting is rapidly downregulated by photoprotective thermal dissipation, which is measured as nonphotochemical quenching of chlorophyll fluorescence (NPQ). To address the involvement of specific
Recent genetic analysis showed that phototropins (phot1 and phot2) function as blue light receptors in stomatal opening of Arabidopsis thaliana, but no biochemical evidence was provided for this. We prepared a large quantity of guard cell protoplasts from Arabidopsis. The immunological method
Xanthophylls (oxygen derivatives of carotenes) are essential components of the plant photosynthetic apparatus. Lutein, the most abundant xanthophyll, is attached primarily to the bulk antenna complex, light-harvesting complex (LHC) II. We have used mutations in Arabidopsis thaliana that selectively

Photosynthetic properties of an Arabidopsis thaliana mutant possessing a defective PsbS gene.

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
We describe the properties of npq4-9, a new mutant of Arabidopsis thaliana (L.) Heynh. with reduced nonphotochemical quenching (NPQ) capacity that possesses a single amino acid substitution in the PsbS gene encoding PSII-S, a ubiquitous pigment-binding protein associated with photosystem II (PSII)

Regulation of photosystem I light harvesting by zeaxanthin.

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
In oxygenic photosynthetic eukaryotes, the hydroxylated carotenoid zeaxanthin is produced from preexisting violaxanthin upon exposure to excess light conditions. Zeaxanthin binding to components of the photosystem II (PSII) antenna system has been investigated thoroughly and shown to help in the
Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta znanošću

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti znanošću
  • Prepoznavanje bilja slikom
  • Interaktivna GPS karta - označite bilje na mjestu (uskoro)
  • Pročitajte znanstvene publikacije povezane s vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoje interese i budite u toku s istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Svi podaci temelje se na objavljenim znanstvenim istraživanjima

Google Play badgeApp Store badge