Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Natural Products 2014-Jul

A chemically defined 2,3-trans procyanidin fraction from willow bark causes redox-sensitive endothelium-dependent relaxation in porcine coronary arteries.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Aurica M Kaufeld
Heinz H Pertz
Herbert Kolodziej

Mo kle

Abstrè

Extracts of the bark of willow species (Salix spp.) are popular herbal remedies to relieve fever and inflammation. The effects are attributed to salicin and structurally related phenolic metabolites, while polyphenols including procyanidins are suggested to contribute to the overall effect of willow bark. This study aimed at investigating the relaxant response to a highly purified and chemically defined 2,3-trans procyanidin fraction in porcine coronary arteries. The procyanidin sample produced a concentration-dependent relaxation in U46619-precontracted tissues. Relaxation was predominantly mediated through the redox-sensitive activation of the endothelial phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathway, leading to the subsequent activation of endothelial nitric oxide synthase (eNOS) by phosphorylation, as evidenced by Western blotting using human umbilical vein endothelial cells (HUVECs). That the relaxant response to Salix procyanidins was reactive oxygen species (ROS)-dependent with O2(-) as the key species followed from densitometric analysis using 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA assay) and employment of various ROS inhibitors, respectively. The data also suggested the modification of intracellular Ca(2+) levels and KCa channel functions. In addition, our organ bath studies showed that Salix procyanidins reversed the abrogation of the relaxant response to bradykinin by oxidized low-density lipoproteins (oxLDL) in coronary arteries, suggesting a vasoprotective effect of willow bark against detrimental oxLDL in pathological conditions. Taken together, our findings suggest for the first time that 2,3-trans procyanidins may contribute not only to the beneficial effects of willow bark but also to health-promoting benefits of diverse natural products of plant origin.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge