Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochemistry 2008-Jul

A shared binding site for NAD+ and coenzyme A in an acetaldehyde dehydrogenase involved in bacterial degradation of aromatic compounds.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Yu Lei
Peter D Pawelek
Justin Powlowski

Mo kle

Abstrè

The meta-cleavage pathway for catechol is a central pathway for the bacterial dissimilation of a wide variety of aromatic compounds, including phenols, methylphenols, naphthalenes, and biphenyls. The last enzyme of the pathway is a bifunctional aldolase/dehydrogenase that converts 4-hydroxy-2-ketovalerate to pyruvate and acetyl-CoA via acetaldehyde. The structure of the NAD (+)/CoASH-dependent aldehyde dehydrogenase subunit is similar to that of glyceraldehyde-3-phosphate dehydrogenase, with a Rossmann fold-based NAD (+) binding site observed in the NAD (+)-enzyme complex [Manjasetty, B. A., et al. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 6992-6997]. However, the location of the CoASH binding site was not determined. In this study, hydrogen-deuterium exchange experiments, coupled with peptic digest and mass spectrometry, were used to examine cofactor binding. The pattern of hydrogen-deuterium exchange in the presence of CoASH was almost identical to that observed with NAD (+), consistent with the two cofactors sharing a binding site. This is further supported by the observations that either CoASH or NAD (+) is able to elute the enzyme from an NAD (+) affinity column and that preincubation of the enzyme with NAD (+) protects against inactivation by CoASH. Consistent with these data, models of the CoASH complex generated using AUTODOCK showed that the docked conformation of CoASH can fully occupy the cavity containing the enzyme active site, superimposing with the NAD (+) cofactor observed in the X-ray crystal structure. Although CoASH binding Rossmann folds have been described previously, this is the first reported example of a Rossmann fold that can alternately bind CoASH or NAD (+) cofactors required for enzymatic catalysis.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge