Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Archives of Biochemistry and Biophysics 1990-Nov

Activation of sucrose-phosphate synthase from darkened spinach leaves by an endogenous protein phosphatase.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
S C Huber
J L Huber

Mo kle

Abstrè

Sucrose-phosphate synthase (SPS; EC 2.4.1.14) extracted from darkened spinach (Spinacia oleracea L.) leaves has a low activation state, defined as the ratio of activity measured with limiting substrates (plus the inhibitor Pi) to activity with saturating substrates (maximum velocity). Preincubation at 25 degrees C of desalted crude extracts from darkened leaves resulted in a time-dependent increase in activation state that was inhibited by Pi [IC50 (concentration causing 50% inhibition) approximately 3 mM], molybdate, okadaic acid (IC50 approximately 25 nM) and vanadate, but was stimulated by fluoride. The "spontaneous activation" of SPS in vitro was enhanced slightly by exogenous MgCl2 (up to 5 mM) and exhibited a pH optimum of 7.0 to 7.5. Radioactive phosphate incorporated into SPS during labeling of excised leaves with [32P]Pi in the dark was lost with time when extracts were incubated at 25 degrees C. This loss in radiolabel was substantially reduced by vanadate. These results provide direct evidence for action of an endogenous protein phosphatase(s) using SPS as substrate. The spontaneous activation achieved in vitro could be reversed by subsequent addition of 1 mM Mg.ATP; the activation/inactivation achieved in vitro was similar in magnitude to the dark-light regulation observed in vivo. Moreover, feeding okadaic acid to excised leaves in the dark blocked subsequent light activation of SPS without affecting photosynthetic rate. These results are consistent with the notion that SPS contains phosphorylation site(s) that reduce enzyme activation state and that dephosphorylation of these residue(s) is the mechanism of light activation. Regulation of the protein phosphatase by Pi may be of physiological significance.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge