Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Psychopharmacology 2018-Sep

Acute cocoa flavanols intake improves cerebral hemodynamics while maintaining brain activity and cognitive performance in moderate hypoxia.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
L Decroix
K De Pauw
J Van Cutsem
N Pattyn
E Heyman
R Meeusen

Mo kle

Abstrè

BACKGROUND

Acute cocoa flavanols (CF) intake has been suggested to modulate cognitive function and neurovascular coupling (NVC). Whether increased NVC is solely driven by improved vascular responsiveness or also by neuronal activity remains unknown. This study investigated the effects of acute CF intake on cognitive performance, NVC, and neuronal activity in healthy subjects in normoxia and hypoxia (4000 m simulated altitude; 12.7% O2).

METHODS

Twenty healthy subjects (age 23.2 ± 4.3 years) performed four trials. Participants performed a Stroop task and "cognition" battery 2 h after acute CF (530 mg CF, 100 mg epicatechin) or placebo intake, and 30 min after initial exposure to hypoxia or normoxia. Electroencephalogram and functional near-infrared spectroscopy were used to analyze hemodynamic changes and neuronal activity.

RESULTS

CF enhanced NVC in the right prefrontal cortex during several tasks (risk decision making, visual tracking, complex scanning, spatial orientation), while neuronal activity was not affected. CF improved abstract thinking in normoxia, but not in hypoxia and did not improve other cognitive performances. Hypoxia decreased accuracy on the Stroop task, but performance on other cognitive tasks was preserved. NVC and neuronal activity during cognitive tasks were similar in hypoxia vs. normoxia, with the exception of increased β activity in the primary motor cortex during abstract thinking.

CONCLUSIONS

Acute CF intake improved NVC, but did not affect neuronal activity and cognitive performance in both normoxia and hypoxia. Most cognitive functions, as well as NVC and neuronal activity, did not decline by acute exposure to moderate hypoxia in healthy subjects.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge