Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Langmuir 2011-Oct

Adsorption of n-butanol from dilute aqueous solution with grafted calixarenes.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Anthony B Thompson
Sydney J Cope
T Dallas Swift
Justin M Notestein

Mo kle

Abstrè

Materials were synthesized for the recovery of n-butanol from dilute aqueous solutions, as may be useful for applications in biofuel-water separations. These materials are composed of hydrophobic, cavity-containing calixarenes covalently bound directly to porous, hydrophilic silica supports through a Si linker atom rather than a flexible organic linker, as is common, at surface coverages of up to ∼0.25 calixarenes/nm(2) (∼250 μmol calix/g matl). The calixarene ring size, upper rim groups, bridging group (calixarene vs thiacalixarene), and surface density were varied. The materials were characterized by NMR, UV-vis, and TGA. The absolute butanol uptake reached ∼0.16 mmol butanol per gram of material at equilibrium concentrations below 0.12 M and increased monotonically with the calixarene surface density. The background adsorption onto the silica surface was small at high calixarene loading. At 298 K, the free energy of adsorption in the calixarene cavities became more favorable by 3 kJ/mol as the surface area of the hydrophobic calixarene upper rim groups increased from H to methyl to tert-butyl, consistent with adsorption driven by van der Waals interactions. A thiacalix[4]arene-SiO(2) material, containing polarizable sulfur bridges and a larger, more conformationally mobile calixarene structure, had slightly stronger adsorption still. All materials except this thiacalixarene exhibited fully reversible adsorption into solution. As a representative material, the adsorption of n-butanol from aqueous solution at a tert-butylcalix[4]arene site was accompanied by a negligible enthalpy change but a small, favorable entropy change of +50 ± 20 J/mol/K, indicating that adsorption is driven by desolvation. Butanol desorbed from tert-butylcalix[4]arene materials at ∼150 °C into the gas phase, well within the range of stability of calixarenes (<300 °C), indicating that these materials have promise as regenerable adsorbents.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge