Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Materials Science: Materials in Medicine 2009-Jan

An investigation of microbial adhesion to natural and synthetic polysaccharide-based films and its relationship with the surface energy components.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Polina Prokopovich
Stefano Perni

Mo kle

Abstrè

In recent years, polysaccharide-based films have been developed for many applications. Some of these are in the pharmaceutical industry, where the adhesion of microorganisms to surfaces is a concern. After adhesion of a microorganism to a solid surface has taken place, the subsequent biofilm formed can act as a vehicle for spreading infections. The aim of this study is to compare the bacterial adhesion of E. coli and S. aureus from a contaminated solid model (Tryptone Soya Agar) to a range of polysaccharide-based films. These polysaccharide-based films consist of different natural starches (potato, cassava, wheat, pea and rice) and synthetic polymers hydroxyl-propyl cellulose (HPC) and carboxyl methyl cellulose (CMC)). The surface energy parameters of the films were calculated from the contact angle measurements by the sessile drop method. Apolar and polar liquids (water, formamide and hexadecane) and the Lifshitz-Van der Waals/acid-base (LW/AB) approach were used according to the method of Van Oss, Chaundhury and Good. The surface properties of the films were also correlated to the microbial adhesion. This indicated that, for both E. coli and S. aureus, the surface roughness did not affect the microbial adhesion. Only gamma(sAB) had any correlation with the microbial adhesion and gamma(sLW) was almost constant for all the various polysaccharide films tested. In addition, the electron-donor properties of the materials, exhibited via gamma(s+), were positively correlated with the adhesion of S. aureus but not with E. coli. This was in agreement with the results of the MATS (Microbial Adhesion To Solvents) test performed on the two bacteria. This revealed that only S. aureus presented an electron-acceptor characteristic.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge