Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Pharmaceutical Biology 2013-Mar

Antidiabetic components of Cassia alata leaves: identification through α-glucosidase inhibition studies.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
George Kadakasseril Varghese
Lekshmi Vijaya Bose
Solomon Habtemariam

Mo kle

Abstrè

BACKGROUND

Cassia alata Linn. [syn. Senna alata (L.) Roxb.] (Caesalpiniaceae) is used for treating various disease conditions including diabetes but its mechanism(s) of action and active principles remain to be elucidated.

OBJECTIVE

The antidiabetic principles were identified using an in vitro α-glucosidase inhibition study.

METHODS

The methanol extract of leaves of C. alata, which showed potent α-glucosidase inhibitory activity (IC₅₀, 63.75 ± 12.81 µg/ml), was fractionated. Active fractions were taken for further analysis by a variety of techniques including HPLC and Combiflash chromatography. The identity of the isolated compounds was established by spectroscopic analysis while their potential antidiabetic activity was assessed by in vitro enzyme inhibition studies.

RESULTS

The α-glucosidase inhibitory effect of the crude extract was far better than the standard clinically used drug, acarbose (IC₅₀, 107.31 ± 12.31 µg/ml). A subsequent fractionation of the crude extract was made using solvents of ascending polarity (petroleum ether, chloroform, ethyl acetate, n-butanol and water). The ethyl acetate (IC₅₀, 2.95 ± 0.47 µg/ml) and n-butanol (IC₅₀, 25.80 ± 2.01 µg/ml) fractions which contained predominantly kaempferol (56.7 ± 7.7 µM) and kaempferol 3-O-gentiobioside (50.0 ± 8.5 µM), respectively, displayed the highest carbohydrate enzyme inhibitory effect.

CONCLUSIONS

One of the possible antidiabetic mechanisms of action of C. alata is by inhibiting carbohydrate digestion. This is the first report on α-glucosidase activity of kaempferol 3-O-gentiobioside.

CONCLUSIONS

Considering the activity profile of the crude extract and isolated bioactive compounds, further in vivo and clinical studies on C. alata extracts and compounds are well merited.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge